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Abstract. We establish a generalization of the Dynkin theorem for multi-
linear elements. It allows us to construct the presentation of a multilinear Lie
element as a linear combination of base Lie elements.
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1. Introduction

For elements of an associative algebra z,...,x, € A, denote by [z1,...,x,] the
right-bracketed commutator [x1, [, - [x,_1,2,] - ]]. For example, [x1, zo, 23] =
T1XT9T3 — T1X3Ty — T2T3L] + T3TaXq.

Let F}, be the multilinear part of the free associative algebra freely generated
by n elements ay,...,a,. Recall that a base element of the form a;, ---a;, is
called multilinear if each element a;, 1 <1 <n, enters exactly one time. A linear
combination of multilinear base elements is called multilinear. Then F, has a
base constituted by the elements aq(1) - - ag(n), Where o € S, are permutations.
In particular, dim F,, = n!. Let L,, be the multilinear part of the free Lie algebra
generated by elements ai,...,a,. Then L, has a base constituted by elements
a6y, s Gom—1), @], where o € S, is such that o(n) = [. In particular, dim L, =
(n — 1)!. Here we suppose that the base field K has characteristic 0. These facts
are known. See details, for example, in [7].

Let Fy) be the subspace of F, generated by elements ay()- - aomn-1)a,
where o € S,, runs through all permutations such that o(n) = [. In particular,

dim FY = (n — 1)! = dim L,. Let
q:F,— FV

be the natural projection of linear spaces,

QI(Z Aolo(1) *** Qo(n—1)Ao(n)) = Z Aolo(1) " * Qg(n—1)01-

oESy c€Sp,o(n)=l
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Let
p=lq): F,— L,

be the linear map defined by

Z A alo(1) " Qo(n— l)aa(n)) Z /\U [aa(l)a 5 Ae(n—-1) al]-

oeSy, c€Sn,o(n)=l
Then
p:pl_’_—l—pnFn_)Ln
is the Dynkin map,

Z A aQg(1) " " Ag(n—1)0¢ n) Z )‘ aU(1)7 5 Qo(n—1), ag(n)]

ogESy ogESy

An element X € F,, is called a Lie element if X € L,. For example, the
element X = ajaqas — ajasas is not Lie and Y = ajaqa3 — a1asza9 — asaza; + azasaq
is Lie, Y = [a4, [ag, as]]. The Dynkin-Specht-Wever theorem ([1], [2], [8], [9]) states
that for a homogeneous element X of degree n, X is a Lie element if and only if
pX =nX.

The aim of our paper is to establish the following more exact version of the
Dynkin theorem for multilinear elements.

Theorem 1.1. Let X € F, is a multilinear element of degree n. Then the
following conditions are equivalent:

(i) X is a Lie element

(ii) for any 1 <l <n, pX =X

11 Pam(X) = T N, forany e K, 1<I<n
=1 =1

(iv) mX =p X =--- =p,X.

For a Lie element X let us call its presentation as a linear combination of
Lie base elements a Lie expression of X. Theorem 1.1 allows us to construct Lie
expressions for known Lie elements.

Corollary 1.2.  (Dynkin) If X is a multilinear Lie element of degree n, then
X s Lie if and only if pX = nX.

Proof. It is clear that for any X the element pX is a Lie element. By this
reason, if pX = nX and characteristic of the base field is 0, then X = 1/npX is
a Lie element.

Conversely, suppose that X is A Lie element. Since p = Y ", p, by

Theorem 1.1,
pX:Zpl(X):nX. [
=1
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2. Proof of Theorem 1.1

Let
Spy={oceS,lol)<---<o(l)|o(ll+1) <---<a(n)}
and
SU ={o € S,|o(n) =1}.

Lemma 2.1.  For any x1,...,x, € A,

n—1

[T1,.. . 2] = (=1)"To1) " To@)TnTan-1) " * To(r+1)-

r=0 c€Sp_1,r

Proof.  Follows from Theorem 8.16 [7]. ]

Lemma 2.2. Forany 1 <[l <n, qp = q.

Proof. We have to prove that for any X € F,, qpX = ¢ X. Let us present
q X as a linear combination of base elements

QX = Z Holo(1) * * * Qo(n—1)a1-

O'ES,(Ll)
Then
pX = [@X] = Y poltoqy, Qo) ail.
UESS)
Therefore by Lemma 2.1,
apX = Z Holo(1) * " * Ao(n-1)01 = @1 X. u
065'7(5)

Lemma 2.3. Let X € F,. If p X =0 forany 1 <1 <mn, then X =0.

Proof. By Lemma 2.2,

plX:0:>qlplX:0:>qu:0:>X:quX:O. |

=1

Proof of Theorem 1.1.
(i) <= (ii): Suppose that X € F,, is a Lie element and 1 <[ < n. Take
base of the Lie multilinear part L,, constituted by elements [as1), - , Go(n—1), @],

where o € S,(Ll). Then

X = Z Mo [ao(l)a <+ Ao(n—1), al]a
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for some pu, € K,0 € SY. Hence by Lemma 2.1,
QX = Z Holo(1) * ** Qo (n—1)01-

UES&Z)

Therefore,
mX = [C]lX] = Z Ma[aa(l)a . 7%(7171),@1] = X.
0657(})
Suppose now that p; X = X for some 1 <[ < n. Since p;X is a sum of

comutators, X is a Lie element.

(i) <= (iii): If pX = X for any 1 <! <n, then

D o Am(X) =Y AX,
=1 =1

forany \y € K, 1 <[ <n.
Suppose conversely, that

Z Api(X) = Z AKX,
=1 =1

forany \; € K, 1 <[ <n. For given 1 <[ <n take \; =1 and A\; = 0,s # [.
We obtain the condition (i).

So, we have proved that conditions (i), (ii), (iii) are equivalent.

(1), (i), (i) <= (iv)

Suppose that

Z Api(X) = Z A X,
=1 =1

forany \; € K, 1 <1 <n. Take \y =1, A1 =—1, and \; =0, s #[,l+ 1, for
1 <1 < n. Then by (iii)
pX —praX =0

for any 1 <[ < n. This is the condition (iv).
Now suppose that we have the condition (iv). Then

pX = =pX =Y,

for some Y € F,,. Moreover, since p; X is a sum of commutators, Y is a Lie
element. Then (since conditions (i) and (ii) are equivalent),

pY =Y, 1<l <n.
Let Z =X —Y. Then
pZ=pX—-pY =Y -Y =0,
for any 1 <[ <n. By Lemma 2.3, Z =0. So, X =Y, and
mX =---=p, X =X.

We obtain the condition (ii).
Theorem 1.1 is proved completely.
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3. Applications of Theorem 1.1

For a Lie element X let us call its presentation as a linear combination of Lie base
elements a Lie expression of X. In this section we construct Lie expressions for
known Lie elements. Since these elements are multilinear, all constructions follow
from Theorem 1.1.

For a word w = iy ...4; with components in [n] = {1,2,...,n}, let us say
that k& = |u] is its length, and that s € [n — 1] is a descent indez if is > is11.
Denote by Des(u) the set of descent indices of u. The sum of all descent indices
is called the major index of u and is denoted as maj(u),

maj(u Z J-

j€Des(u)

Define the multi-parametric q-major index majq(u) of a word u by

H j€Des(u) Qu(1) """ Qu(j)
ul—1
T (= quy - quis)

where q =(q1, ..., ¢,) are some variables.

majq(u) =

b

For a primitive n-th root of unity ¢ € K, A.A. Klyachko has constructed
in [4] the following Lie element:

1 maj (o
:5 Zq j( )ao_(l)...a/o_(n)_

O'ESn

The Klyachko element has the following multi-parameter generalisation [6]. Let

Z majq aa(l aa(n).
O'ESTL

Then k,(q) is a Lie element if ¢1q2--- ¢, = 1, but ¢;,¢;, - - - ¢;, # 1 for any proper
subset {iy,...,i,} C [n].

The Klyachko element has one more generalization. In [5] a Lie idempo-
tent was constructed that generalises three other well-known idempotents. This
generalization concerns the so called ¢-Solomon Lie element,

d(02)+1)

(_1)des(a)qmaj(<7)—(

€5, [ 7’;(—0)1 ]q

Ao(1) "+ Qo(n)-

Here [ " ; 1 } denotes the g-binomial coefficient. Recall that
q

! =1+q+-+¢""

and
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g-Solomon elements have the following properties:

is the Klyachko element if w is a primitive root of degree n,

¢n(0) = ["'[CL1,(12},"' 7an]

is the Dynkin Lie element in the case ¢ = 0, and

-1 des(o)
¢n<1) - Z ( n)—l Qg (1) "+ " Qo(n)
oESn (des(U))

gives us the (first) Euler element if ¢ = 1.

Corollary 3.1. A Lie expression for the multi-parameter Klyachko element is

kn(q) = Z majq(g)[aa(l)a <oy Qo(n—1), an]'

0€Snp,0(n)=n

Corollary 3.2. A Lie expression for the Klyachko element is

kn== > q"asq),. ., Go(nory, an).

0ESn,0(n)=n
These facts was established in [3].

Corollary 3.3. A Lie expression for the q-Solomon element is given by

. d(o)+1
| (1 )desto) gmai(o)=(*7} )
gbn(Q) - E Z n — 1 [a/()'(l)u ttt 7(10'(71—1)7 an].
UESn,O'(’VL)Zn |: :|
d(o) lq

Corollary 3.4. A Lie expression for the Dynkin element is

H e [ah CL2]7 o ']a an] = Z (‘Udes(g) [%(1), © 5y Go(n—1), an]-

O'GMn

Here summation is taken over the set of permutations

M, = {0 € Symaj(o) = <d65<“2) * 1),a(n) ~ ).

Let

M, = (o € Suafmai(o) = (7 1)
Then

M, = {on|lo € M }.
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Note that the set M/ can be easily construced by induction. Set M) = {1}. Then
M, for n > 1, consists of permutations of the forms o n (append n at the end)
and no (prepend n at the beginning), where o € M/. Note also that for any
oe M/,

des(no) =des(o) +1, des(on) = des(o).

Corollary 3.5.  The Fuler element has the following Lie expression

(_1)des(a)
ou(D)= D ey e Qo) ).

c€Sn,o(n)=n (des(a))
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