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1. Introduction

An algebraic approach in Genetics consists of the study of various types of genetic
algebras (like algebras of free, “self-reproduction” and bisexual populations, Bern-
stein algebras). The formal language of abstract algebra to study of genetics was
introduced in [2–4]. In recent years many authors have tried to investigate the diffi-
cult problem of classification of these algebras. The most comprehensive references
for the mathematical research done in this area are [1, 6–9].

Let A be an arbitrary algebra and let {e1, e2, . . .} be a basis of the algebra A.
The table of multiplication on A is defined by the products of the basic elements,
namely,

eiej =
∑

k

γk
ijek,
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where γk
ij are the structural constants. The study of such a general algebra A is

difficult, since it is determined by the cubic matrix {γk
ij} of structural constants.

In some evolution algebras the cubic matrix is reduced to quadratic (see [8]) or
rectangular (see [5]) matrices. This simplicity of the matrix allows to obtain deeper
results on the algebra.

In this paper, following [5] we consider a set {hi, i = 1, . . . , n} (the set of “hen”s)
and r (a “rooster”).

Let (C, ·) be an algebra over a field K (with characteristic �= 2). If it admits a
basis {h1, . . . , hn, r} such that

hir = rhi =
1
2


 n∑

j=1

aijhj + bir


,

hihj = 0, i, j = 1, . . . , n; rr = 0,

(1.1)

then this algebra is called an evolution algebra of a “chicken” population (EACP).
The basis {h1, . . . , hn, r} is called a natural basis.

We note that an algebra C is defined by a rectangular n × (n + 1)-matrix

M =




a11 a12 . . . a1n b1

a21 a22 . . . a2n b2

...
...

. . .
...

...
an1 an2 . . . ann bn


 ,

which is called the matrix of structural constants of the algebra C.
For a given element x of an algebra C, define a right multiplication operator

Rx : C → C, as Rx(y) = yx, y ∈ C. It should be noted that the matrix M of
EACP C coincides with the matrix of right multiplication operator Rr. Therefore,
the multiplication of EACP C may be given by the operator Rr.

In [5] it is proved that the algebra C is commutative (and hence flexible), not
associative and not necessarily power associative, in general. Moreover it is not
unital. A condition is found on the structural constants of the algebra under which
the algebra is associative, alternative, power associative, nilpotent, satisfies Jacobi
and Jordan identities. The set of all operators of left (right) multiplications is
described. Under some conditions on the structural constants it is proved that the
corresponding EACP is centroidal. Moreover the classification of two-dimensional
and some three-dimensional EACP are obtained.

In this paper, we continue the study of EACP. In Sec. 2 using the Jordan form
of the matrix of structural constants we give a simple representation of EACP.
Section 3 is devoted to the classification of three-dimensional complex EACP. In
Sec. 4 we describe some (n + 1)-dimensional EACP.

2. The Structure of EACP

Recall some notations.
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Definition 1. An element x of an algebra A is called nil if there exists n(a) ∈ N

such that (· · · ((x · x) · x) · · ·x︸ ︷︷ ︸
n(a)

) = 0. The algebra A is called nil if every element of

the algebra is nil.

For k ≥ 1, we introduce the following sequences:

A(1) = A, A(k+1) = A(k)A(k);

A〈1〉 = A, A〈k+1〉 = A〈k〉A;

A1 = A, Ak =
k−1∑
i=1

AiAk−i.

Definition 2. An algebra A is called

(i) solvable if there exists n ∈ N such that A(n) = 0 and the minimal such number
is called index of solvability;

(ii) right nilpotent if there exists n ∈ N such that A〈n〉 = 0 and the minimal such
number is called index of right nilpotency;

(iii) nilpotent if there exists n ∈ N such that An = 0 and the minimal such number
is called index of nilpotency.

We note that for an EACP notion as nil, nilpotent and right nilpotent algebras
are equivalent. However, the indexes of nility, right nilpotency and nilpotency do
not coincide in general.

In this section we consider EACP over the field of complex numbers.
Let C be an (n + 1)-dimensional complex EACP and {h1, h2, . . . , hn, r} be a

basis of this algebra. Then the table of multiplications of EACP have the following
form

hir = rhi =
1
2


 n∑

j=1

ai,jhj + bir


, hihj = rr = 0.

Let C and D be EACPs; we say that a linear homomorphism f from C to D
is an evolution homomorphism if f is an algebraic map and for a natural basis
{h1, . . . , hn, r} of C, {f(r), f(hi), i = 1, . . . , n} spans an evolution subalgebra in D.
Furthermore, if an evolution homomorphism is one-to-one and onto, it is an evolu-
tion isomorphism.

Theorem 1. If bi = 0 for any i = 1, . . . , n, then C is a solvable EACP and it is
isomorphic to one of the following pairwise non-isomorphic algebras:

hPs−1
i=1 ni+1r =

1
2
(ashPs−1

i=1 ni+1 + hPs−1
i=1 ni+2)
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hPs−1
i=1 ni+2r =

1
2
(ashPs−1

i=1 ni+2 + hPs−1
i=1 ni+3)

...

hPs−1
i=1 ni+ns−1r =

1
2
(ashPs−1

i=1 ni+ns−1 + hPs−1
i=1 ni+ns

)

hPs−1
i=1 ni+ns

r =
1
2
(ashPs−1

i=1 ni+ns
),

where n = n1 + · · · + nk, s = 1, . . . , k and (a1, a2, . . . , ak) = (1, a2, . . . , ak) or
(a1, a2, . . . , ak) = (0, 0, . . . , 0).

Proof. If bi = 0 for any i = 1, . . . , n, then we have the multiplication

hir =
1
2


 n∑

j=1

ai,jhj


, hihj = rr = 0.

It follows that C(2) ⊆ 〈h1, h2, . . . , hn〉, which implies C(3) = 0. Hence, C is
solvable.

Since C is a complex EACP, then by theorem on Jordan decomposition we
conclude that there exists a basis of C such that the matrix of the operator Rr

has Jordan form (that is, diagonal block consist of Jordan blocks). We define Rr =
J1 ⊕ J2 ⊕ · · · ⊕ Jk, where ai are diagonal elements of Ji and ni are sizes of blocks
Ji, 1 ≤ i ≤ k. Obviously, n1 + n2 + · · · + nk = n.

Then the table of multiplication of the algebra is follows:

hPs−1
i=1 ni+1r =

1
2
(ashPs−1

i=1 ni+1 + hPs−1
i=1 ni+2)

hPs−1
i=1 ni+2r =

1
2
(ashPs−1

i=1 ni+2 + hPs−1
i=1 ni+3)

...

hPs−1
i=1 ni+ns−1r =

1
2
(ashPs−1

i=1 ni+ns−1 + hPs−1
i=1 ni+ns

)

hPs−1
i=1 ni+ns

r =
1
2
(ashPs−1

i=1 ni+ns
),

where s = 1, . . . , k.

If as0 �= 0, for some 1 ≤ s0 ≤ k, then without loss of generality we can assume
that a1 �= 0.

In this case putting: a′
s = as

a1
, 2 ≤ s ≤ k and

h′Ps−1
i=1 ni+j

=
hPs−1

i=1 ni+j

aj
1

, 1 ≤ j ≤ ns, 1 ≤ s ≤ k,

one can assume that a1 = 1.
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Remark 1. From the above description it is easy to see that for any s, 1 ≤ s ≤ k

〈hPs−1
i=1 ni+1, h

Ps−1
i=1 ni+2, . . . , h

Ps−1
i=1 ni+ns−1, h

Ps−1
i=1 ni+ns

〉
is an ideal of the EACP.

Moreover, if (a1, a2, . . . , ak) = (0, 0, . . . , 0), then EACP is nilpotent.

Suppose that there exists bi0 �= 0, i0 ∈ {1, . . . , n}, then by shifting of the basis
elements hi, 1 ≤ i ≤ n we can assume that b1 �= 0. Moreover, by the scaling
h′

1 = 1
b1

h1 we can assume that b1 = 1. So, we have

h1r =
1
2


 n∑

j=1

a1,jhj + r


, hir =

1
2


 n∑

j=1

ai,jhj + bir


, 2 ≤ i ≤ n.

In obtained table of multiplication we take the following basis transformation:

h′
i = hi − bih1, 2 ≤ i ≤ n.

Therefore, we obtain the table of multiplication

h1r =
1
2


 n∑

j=1

a1,jhj + r


, hir =

1
2


 n∑

j=1

ai,jhj


, 2 ≤ i ≤ n.

Thus, we obtain the following result.

Proposition 1. Let C be an EACP. Then there exists a basis {h1, h2, . . . , hn, r}
such that C on this basis is represented by the table of multiplication as follows:

h1r =
1
2


 n∑

j=1

a1,jhj + δr


, δ ∈ {0, 1}, hir =

1
2


 n∑

j=1

ai,jhj


, 2 ≤ i ≤ n.

3. Three-Dimensional Complex EACP

In the following theorem we present the classification of three-dimensional EACP.

Theorem 2. An arbitrary three-dimensional complex EACP C is isomorphic to
one of the following pairwise non-isomorphic algebras:

If dim C2 = 1, then

C1 : h1r =
1
2
r;

C2 : h1r =
1
2
h2;

C3 : h1r =
1
2
h1 +

1
2
r.

If dim C2 = 2, then

C4 : h1r =
1
2
(h1 + h2), h2r =

1
2
h2;
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C5(β) : h1r =
1
2
h1, h2r =

β

2
h2, β �= 0;

C6(α, β) : h1r =
1
2
(αh1 + βh2 + r), h2r =

1
2
h1;

C7(α) : h1r =
1
2
(αh1 + r), h2r =

1
2
h2;

C8 : h1r =
1
2
(h1 + h2 + r), h2r =

1
2
h2,

where one of non-zero parameter α, β in the algebra C6(α, β) can be assumed to be
equal to 1.

Proof. Since the EACPs with condition dim C2 = 1 are already classified in [5],
we shall consider only algebras such that dim C2 = 2.

According to Proposition 1 we have that there exists a basis {h1, h2, r} such
that the multiplication of C on this basis has the form:

h1r =
1
2
(a1,1h1 + a1,2h2 + δr), h2r =

1
2
(a2,1h1 + a2,2h2).

If δ = 0, then using the result of Theorem 1 we obtain the algebras

I : h1r =
1
2
(αh1 + h2), h2r =

1
2
αh2.

II : h1r =
α

2
h1, h2r =

β

2
h2.

Since dim C2 = 2, then αβ �= 0 and h1, h2 are symmetric in the table of multi-
plication, we can conclude (by scaling of r) that α = 1 and β �= 0, i.e. we obtain
the algebras C4, C5(β).

Let now δ = 1. Then the table of multiplication of the algebra C has the form

h1r =
1
2
(a1,1h1 + a1,2h2 + r), h2r =

1
2
(a2,1h1 + a2,2h2).

Case 1. Let a2,1 �= 0. Then putting r′ = 1
a2,1

r and h′
1 = h1 + a1,2

a2,1
h2 we get family

of algebras:

C6(α, β) : h1r =
1
2
(αh1 + βh2 + r), h2r =

1
2
h1.

Case 2. Let a2,1 = 0. Then a2,2 �= 0 and by scaling r′ = 1
a2,2

r we obtain the
multiplication:

h1r =
1
2
(a1,1h1 + a1,2h2 + r), h2r =

1
2
h2.

• In the case of a1,2 = 0, we have the algebra C7.

• If a1,2 �= 0, then by h′
2 = a1,2h2 we conclude that a1,2 = 1, that is, we get family

of algebras

h1r =
1
2
(αh1 + h2 + r), h2r =

1
2
h2.

1450073-6
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— In the above table of multiplication when α �= 1 by setting h′
1 = h1 + 1

α−1h2

we get the table of multiplication C7(α �= 1).
— In the case of α = 1 we get C8.

Thus, we obtain the algebras

C4, C5(β), β �= 0, C6(α, β), C7(α), C8.

We shall investigate isomorphisms inside of families C6(α, β) and C7(α).
First consider the algebra

C6(α, β) : h1r =
1
2
(αh1 + βh2 + r), h2r =

1
2
h1.

Let us take the general change of basis elements

h′
1 = a1h1 + a2h2 + a3r, h′

2 = b1h1 + b2h2 + b3r, r′ = c1h1 + c2h2 + c3r.

Consider the product

0 = h′
1h

′
1 = 2a1a3h1r + 2a2a3h2r = (a1a3a1,1 + a2a3)h1 + a1a3a1,2h2 + a1a3r.

Hence, a1a3 = a2a3 = 0.

Similarly, from 0 = h′
2h

′
2 = r′r′ = h′

1h
′
2 we derive

b1b3 = b2b3 = c1c3 = c2c3 = 0, a2b3 + a3b2 = 0, a1b3 + a3b1 = 0.

From the chain of equalities

1
2
(a1h1 + a2h2 + a3r) =

1
2
h′

1 = h′
2r

′ = (b1c3 + b3c1)h1r + (b2c3 + b3c2)h2r

=
1
2
(b1c3 + b3c1)(αh1 + βh2 + r) +

1
2
(b2c3 + b3c2)h1,

we deduce

(b1c3 + b3c1)α + (b2c3 + b3c2) = a1, (b1c3 + b3c1)β = a2, b1c3 + b3c1 = a3.

Analogously, the equality

h′
1r

′ =
1
2
(α′h′

1 + β′h′
2 + r′)

implies

(a1c3 + a3c1)α + (a2c3 + a3c2) = α′a1 + β′b1 + c1,

(a1c3 + a3c1)a1,2 = α′a2 + β′b2 + c2,

a1c3 + a3c1 = α′a3 + β′b3 + c3.

Thus, we obtain the following restrictions:

a1a3 = a2a3 = b1b3 = b2b3 = c1c3 = c2c3 = 0, a2b3 + a3b2 = 0, a1b3 + a3b1 = 0,

(b1c3 + b3c1)α + (b2c3 + b3c2) = a1, (b1c3 + b3c1)β = a2, b1c3 + b3c1 = a3,
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(a1c3 + a3c1)α + (a2c3 + a3c2) = α′a1 + β′b1 + c1,

(a1c3 + a3c1)a1,2 = α′a2 + β′b2 + c2,

a1c3 + a3c1 = α′a3 + β′b3 + c3.

It is not difficult to check that a3 = b3 = 0. Therefore, c3 �= 0 (otherwise
the chosen basis transformation is non-singular) and the restriction will have the
following form:

a1 = b2c3 = 1, a2 = b1 = c1 = c2 = 0,

α′ = c3α, β′ = c2
3β.

By choosing appropriate value of c3 we can assert that one of non-zero parameter
α′, β′ can be scaled to 1.

In the case of the family of algebras C7(α) taking general change of basis and
considering products in new basis, we obtain restrictions:

a1a3 = a2a3 = b1b3 = b2b3 = c1c3 = c2c3 = 0, a2b3 + a3b2 = 0,

a1b3 + a3b1 = 0, b1 = (b1c3 + b3c1)α, b2 = (b2c3 + b3c2),

b3 = b1c3 + b3c1, (a1c3 + a3c1)α = α′a1 + c1,

a2c3 + a3c2 = α′a2 + c2, a1c3 + a3c1 = α′a3 + c3.

Simple study of the restrictions lead to

a1 = c3 = 1, a3 = b1 = b3 = c1 = c2 = 0, b2 �= 0, α = α′.

Therefore, for different values of parameter α in the family C7(α) we get non-
isomorphic algebras.

Applying argumentations similar as above we derive that there is no algebra of
the family C7(α) which is isomorphic to the algebra C8.

Since any algebra of the family C6(α, β) has not one-dimensional non-abelian
ideal and 〈h2〉 is non-abelian ideal in algebras C7(α), C8, we conclude that there is
no algebra of the family C6(α, β) which is isomorphic to C7(α) and C8.

Using the explicit form of algebras Ci, i = 1, . . . , 8 mentioned in Theorem 2 one
can easily check the following proposition.

Proposition 2.

• The algebras Ci, i = 1, 4, 5, are solvable.
• The algebra C2 is nilpotent.
• The algebras Ci, i = 3, 6, 7, 8, are non-solvable.

4. The Description of Complex EACP

In this section we give the description of some (n + 1)-dimensional EACP.
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According to Proposition 1, we obtain that any (n + 1)-dimensional EACP
admits a basis {h1, h2, . . . , hn, r} such that the table of multiplication of this basis
has the form

h1r =
1
2


 n∑

j=1

a1,jhj + δr


, δ ∈ {0, 1}, hir =

1
2


 n∑

j=1

ai,jhj


 , 2 ≤ i ≤ n.

Since the result of Theorem 1 gives a description in the case of δ = 0, we shall
consider only the case δ = 1.

Let us introduce denotations

V2 = 〈h2, . . . , hn〉, Rr = Rr|V2 .

Then we have

hir =
1
2


 n∑

j=1

ai,jhj


, 2 ≤ i ≤ n. (4.1)

Considering the equality (4.1) by modulo space 〈h1〉, we obtain

hir =
1
2


 n∑

j=2

ai,jhj


, 2 ≤ i ≤ n mod(〈h1〉). (4.2)

Similar to the proof of Theorem 1, we obtain the following products:

hPs−1
i=1 ni+2r =

1
2
(ashPs−1

i=1 ni+2 + hPs−1
i=1 ni+3)

hPs−1
i=1 ni+3r =

1
2
(ashPs−1

i=1 ni+3 + hPs−1
i=1 ni+4)

...

hPs−1
i=1 ni+ns−1r =

1
2
(ashPs−1

i=1 ni+ns−1 + hPs−1
i=1 ni+ns

)

hPs−1
i=1 ni+ns

r =
1
2
(ashPs−1

i=1 ni+ns
),

where s = 1, . . . , k, n1 + n2 + · · ·+ nk = n− 1 and (a1, a2, . . . , ak) = (1, a2, . . . , ak)
or (a1, a2, . . . , ak) = (0, 0, . . . , 0).

Now go up to the space V1, we obtain the following result.

Theorem 3. There exists a basis {h1, h2, . . . , hn, r} of EACP, such that the table
of multiplication of this basis has the following form:

h1r =
1
2


 n∑

j=1

a1,jhj + r




hPs−1
i=1 ni+2r =

1
2
(aPs−1

i=1 ni+2,1h1 + ashPs−1
i=1 ni+2 + hPs−1

i=1 ni+3)

1450073-9
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hPs−1
i=1 ni+3r =

1
2
(aPs−1

i=1 ni+3,1h1 + ashPs−1
i=1 ni+3 + hPs−1

i=1 ni+4)

...

hPs−1
i=1 ni+ns−1r =

1
2
(aPs−1

i=1 ni+ns−1,1h1 + ashPs−1
i=1 ni+ns−1 + hPs−1

i=1 ni+ns
)

hPs−1
i=1 ni+ns

r =
1
2
(aPs−1

i=1 ni+ns,1h1 + ashPs−1
i=1 ni+ns

),

where s = 1, . . . , k and a1 = 1.

4.1. The case of k = 1

Now we shall investigate the case of k = 1. Thanks to Theorem 3 we obtain the
multiplication: 



h1r =
1
2


 n∑

j=1

a1,jhj + r


,

hir =
1
2
(ai,1h1 + αhi + hi+1), 2 ≤ i ≤ n − 1,

hnr =
1
2
(an,1h + αhn),

where α ∈ {0; 1}.
Assume there exists some m, 2 ≤ m ≤ n such that a1,m �= 0 and a1,m is the

first non-zero parameter. Putting

h′
i =

n∑
j=m

a1,jhj−m+i, 2 ≤ i ≤ n,

we can assume that the table of multiplication has the form

Cα(ai, m1) :




h1r = a1h1 + αhm1 + r, 2 ≤ m1 ≤ n,

hir = aih1 + αhi + hi+1, 2 ≤ i ≤ n − 1,

hnr = anh1 + hn,

where α ∈ {0; 1}.
Consider two algebras C1(ai, m1) and C1(bi, m2), with basis {h1, h2, . . . , hn, r}

and {h′
1, h

′
2, . . . , h

′
n, r′}, respectively. If m1 �= m2, then without loss of generality

we can suppose m1 < m2.

Theorem 4. Two algebras C1(ai, m1) and C1(bi, m2) with m1 < m2 are isomorphic
if and only if

(1) ai = bi = 0, m1 ≤ i ≤ n;
(2) a1 = b1 and b1 �= 1, and b1 �= am1−1 + 1 in the case of bm1−1 �= 0; b1 �= 1, or

am1−2 �= −1 in the case of bm1−1 = 0, bm1−2 �= 0;
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(3) there exist B2, B3, . . . , Bm1−1 ∈ C, with B2 �= 0, such that

bi =
m1−1∑
k=i

Bk−i+2ak, 2 ≤ i ≤ m1 − 1.

Proof. Necessary. Let f be an isomorphism f : C1(bi, m2) → C1(ai, m1). Then

f(h′
i) =

n∑
j=1

Ai,jhj + Cir, 1 ≤ i ≤ n, f(r′) =
n∑

j=1

Djhj + Cn+1r.

Note that, without loss of generality we can assume Cn+1 �= 0.

From the following chain of equalities

0 = f(h′
i)f(h′

i) =


 n∑

j=1

Ai,jhj + Cir





 n∑

j=1

Ai,jhj + Cir


 = 2Ci

n∑
j=1

Ai,jhjr

= Ci


Ai,2h2 + Ai,1hm1 + Ai,1r +

n∑
j=1

Ai,jajh1 +
n∑

j=3

(Ai,j−1 + Ai,j)hj


,

0 = f(r′)f(r′) =


 n∑

j=1

Djhj + Dn+1r





 n∑

j=1

Djhj + Cn+1r


 = 2Cn+1

n∑
j=1

Djhjr

= Cn+1


D2h2 + D1hm1 + D1r +

n∑
j=1

Djajh1 +
n∑

j=3

(Dj−1 + Dj)hj


,

we obtain the restrictions:

Ci

n∑
j=1

Ai,jaj = 0, CiAi,k = 0, 1 ≤ i ≤ n, 1 ≤ k ≤ n,

Cn+1

n∑
j=1

Djaj = 0, Cn+1Dk = 0, 1 ≤ k ≤ n.

Since Cn+1 �= 0, we obtain Di = 0 for 1 ≤ i ≤ n. Moreover, it is not difficult to
obtain that Ci = 0 for 1 ≤ i ≤ n. Indeed, if there exists Ci0 �= 0, for 2 ≤ i0 ≤ n,

then it implies that Ai0,j = 0 for 1 ≤ j ≤ n. It is a contradiction with the condition
of the matrix of the general change is not singular, since Di = 0 for 1 ≤ i ≤ n.

Thus, we have

f(h′
i) =

n∑
j=1

Ai,jhj , 1 ≤ i ≤ n, f(r′) = r.
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Consider the multiplication

f(h′
n)f(r′) =

n∑
j=1

An,jhjr = An,2h2 + An,1hm1 + An,1r +
n∑

j=1

An,jajh1

+
n∑

j=3

(An,j−2 + An,j)hj .

On the other hand,

f(h′
n)f(r′) = bnf(h′

1) + f(h′
n) =

n∑
j=1

(bnA1,j + An,j)hj .

Comparing the coefficients at the basis elements we obtain


An,1 = 0,

n∑
j=2

An,jaj = bnA1,1,

0 = bnA1,2,

An,k = bn,1A1,k+1, 2 ≤ k ≤ n − 1.

(4.3)

Analogously, considering products

f(h′
i)f(r′) =

n∑
j=1

Ai,jhjr = Ai,2h2 + Ai,1hm1 + Ai,1r +
n∑

j=1

Ai,jajh1

+
n∑

j=3

(Ai,j−1 + Ai,j)hj

= bif(h′
1) + f(h′

i) + f(h′
i+1) =

n∑
j=1

(biA1,j + Ai,j + Ai+1,j)hj ,

for 2 ≤ i ≤ n − 1, we get


Ai,1 = 0,

n∑
j=2

Ai,jaj = biA1,1,

biA1,2 + Ai+1,2 = 0,

Ai,k = biA1,k+1 + Ai+1,k+1, 2 ≤ k ≤ n − 1.

(4.4)

Consider the product

f(h′
1)f(r′) =

n∑
j=1

A1,jhjr = A1,2h2 + A1,1hm1 + A1,1r +
n∑

j=1

A1,jajh1

+
n∑

j=3

(A1,j−1 + A1,j)hj
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= b1f(h′
1) + f(h′

m2
) + f(r′) = r +

n∑
j=1

(b1A1,j + Am2,j)hj .

From this we derive


A1,1 = 1,

n∑
j=1

A1,jaj = b1,

A1,2 = b1A1,2 + Am2,2,

A1,k + A1,k+1 = b1A1,k+1 + Am2,k+1, 2 ≤ k ≤ n − 1, k �= m1 − 1,

1 + A1,m1−1 + A1,m1 = b1A1,m1 + Am2,m1 .

(4.5)

From bnA1,2 = 0, we obtain bn = 0. Indeed, if bn �= 0 then A1,2 = 0 and
according to (4.4) we get Ai,2 = 0 for 3 ≤ i ≤ n. From An,2 = bnA1,3 and by (4.4)
we get

A1,3 = 0, A2,2 = A3,3, Ai,3 = 0, 4 ≤ i ≤ n.

Recurrently, we obtain

A1,k = 0, Ak,k = A2,2, Ai,k = 0, 2 ≤ k ≤ m1, k + 1 ≤ i ≤ n.

But since m1 < m2, from 1 + A1,m1−1 + A1,m1 = b1A1,m1 + Am2,m1 we get
incorrect equality 1 = 0. It is a contradiction with assumption bn �= 0.

Thus, bn = 0. From this we have An,i = 0, 2 ≤ i ≤ n − 1 and an = 0.

Continuing this process we obtain the condition (1), i.e.

bi = ai = 0, m1 ≤ i ≤ n.

• If bm1−1,1 �= 0, then it is not difficult to obtain that

A1,j = 0, 2 ≤ j ≤ m1 − 1,

Ai,j = 0, 3 ≤ i ≤ m1 − 1, 2 ≤ j ≤ i − 1.
(4.6)

Indeed, from bm1−1,1A1,2 = 0 we have A1,2 = 0, which implies Ai,2 = 0 for
3 ≤ i ≤ m1 − 1. So, the equality (4.6) is true for j = 2. Recurrently we obtain
the equality (4.6) for any j (2 ≤ j ≤ m1 − 1).

Thus, we obtain a1 = b1,
∑m1−1

k=i Ai,kak = bi, 2 ≤ i ≤ m1 − 1, and


1 + A1,m1 = b1A1,m1 ,

A1,k + A1,k+1 = b1A1,k+1, m1 ≤ k ≤ m2 − 2,

A1,k + A1,k+1

= b1A1,k+1 + Am1,m1−m2+k+1, m2 − 1 ≤ k ≤ n − 1,

Ai,k = Ai+1,k+1, 2 ≤ i ≤ m1 − 2, i ≤ k ≤ m1 − 2,

Ai,k = biA1,k+1 + Ai+1,k+1, 2 ≤ i ≤ m1 − 1, m1 − 1 ≤ k ≤ n − 1,

Ai,k = Ai+1,k+1, m1 ≤ i ≤ n − 1, i ≤ k ≤ n − 1.

(4.7)
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Taking into account the equality 1 + A1,m1 = b1A1,m1 , we have b1 �= 1, and
A1,m1 = 1

b1−1 . From the fifth equality of (4.7) for k = m1 − 1, we have

Am1,m1 = Am1−1,m1−1 − bm1−1A1,m1 = bm1−1

(
1

am1−1
− 1

b1 − 1

)
.

Since Am1,m1 �= 0, we obtain b1 �= am1−1 +1, i.e. the condition (2) is satisfied.
Taking into account, the fourth equation of the system (4.7), putting Bk =

A2,k, 2 ≤ k ≤ m1 − 1 we obtain the condition (3).
• In the case of bm1−1 = 0, using the similar argument for the first non-zero element

bt from the set {bm1−2, . . . , b2} we obtain the equality a1 = b1,
∑t

k=i Ai,kak =
bi, 2 ≤ i ≤ t, and


A1,t+1 = b1A1,t+1,

A1,k + A1,k+1 = b1A1,k+1, t + 1 ≤ k ≤ m1 − 2,

1 + A1,m1−1 + A1,m1 = b1A1,m1 ,

A1,k + A1,k+1 = b1A1,k+1, m1 ≤ k ≤ m2 − 2,

A1,k + A1,k+1

= b1A1,k+1 + At+1,t−m2+k+2, m2 − 1 ≤ k ≤ n − 1,

Ai,k = Ai+1,k+1, 2 ≤ i ≤ t − 1, i ≤ k ≤ t − 1,

Ai,k = biA1,k+1 + Ai+1,k+1, 2 ≤ i ≤ t, t ≤ k ≤ n − 1,

Ai,k = Ai+1,k+1, t + 1 ≤ i ≤ n − 1, i ≤ k ≤ n − 1.

(4.8)

If t = m1 − 2, then in the case of b1 = 1 and am1−2 = −1, we obtain
Am1−1,m1−1 = bm1−2( 1

am1−2
+1) = 0, which is a contradiction with the existence

of isomorphism f. Therefore, if t = m1 − 2, then b1 �= 1 or am1−2 �= −1, i.e. the
condition (2) is satisfied.

Putting Bk = A2,k, 2 ≤ k ≤ m1 − 1 we obtain the condition (3).

Sufficient. Let the conditions (1), (2) and (3) are satisfied. From the previous
proof it follows that the existence of an isomorphism f : C1(bi, m2) → C1(ai, m1) is
equivalent to the solvability of (4.7) ((4.8) if bm1−1 = 0).

In the case of bm1−1 �= 0, and b1 �= 1, b1 �= am1−1 + 1 we find a solution of (4.7)
as follows:

Ai,k = Bk−i+2, 2 ≤ i ≤ m1 − 1, i ≤ k ≤ m1 − 1,

A1,k =
1

(b1 − 1)k−m1+1
, m1 ≤ k ≤ m2 − 1,

Ai,i = bm1−1

(
1

am1−1
− 1

b1 − 1

)
, m1 ≤ i ≤ n.

Then from (4.7) we obtain other parameters Ai,k.

The case bm1−1 = 0 is similar to the case bm1−1 �= 0.
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Corollary 1. C1(0, m) ∼= C1(0, 2) for any m(3 ≤ m ≤ n). And as an isomorphism
we can take

f(h′
1) = h1 +

m−1∑
k=1

(−1)khk +
m∑

k=m

((−1)k−1 + (−1)k−m)hk,

f(h′
i) = hi, 2 ≤ i ≤ n, f(r′) = r.

Analogously, we obtain the following theorem for the class of algebras C0(ai, m).

Theorem 5. Two algebras C0(ai, m1) and C0(bi, m2) with m1 < m2 are isomorphic
if and only if

(1) ai = bi = 0, m1 ≤ i ≤ n;
(2) a1 = b1 and b1 �= 0, and b1 �= am1−1 in the case of bm1−1 �= 0; b1 �= 0, or

am1−2 �= −1 in the case of bm1−1 = 0, bm1−2 �= 0;
(3) there exist B2, B3, . . . , Bm1−1 ∈ C, with B2 �= 0, such that

bi =
m1−1∑
k=i

Bk−i+2ak, 2 ≤ i ≤ m1 − 1.

Now we investigate the criteria of isomorphism inside the class of C1(ai, m).
According to Theorem 4, if ai = 0 for m−1 ≤ i ≤ n, then there exists an algebra

C1(ci, m − 1) which is isomorphic to C1(ai, m), we consider the case of ai �= 0 for
some i(m − 1 ≤ i ≤ n).

For this purpose consider two algebras C1(ai, m) and C1(bi, m), i.e. case of
m1 = m2.

Similar to the proof of Theorem 4, we consider the isomorphism f : C1(bi, m) →
C1(ai, m) as follows:

f(h′
i) =

n∑
j=1

Ai,jhj , 1 ≤ i ≤ n, f(r′) = r.

We obtain A1,1 = 1, Ai,1 = 0, for 2 ≤ i ≤ n and the following restrictions:


b1 = a1 +
n∑

j=2

A1,jaj ,

bi =
n∑

j=2

Ai,jaj , 2 ≤ i ≤ n,

bnA1,2 = 0, biA1,2 + Ai+1,2 = 0, 2 ≤ i ≤ n,

Ai,k = biA1,k+1 + Ai+1,k+1, 2 ≤ i ≤ n − 1, 2 ≤ k ≤ n − 1,

An,k = bnA1,k+1, 2 ≤ k ≤ n − 1,

A1,2 = b1A1,2 + Am,2,

A1,k + A1,k+1 = b1A1,k+1 + Am,k+1, 2 ≤ k ≤ n − 1, k �= m − 1,

1 + A1,m−1 + A1,m = b1A1,m + Am,m.

(4.9)
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From (4.9) it is not difficult to obtain the following recurrent formula:

Ai+1,k+1 = A2,k−i+2 −
i∑

j=2

biA1,k−i+1+j . (4.10)

Let p be the first non-zero element from the set {bn, bn−1, . . . , bm−1}.
In the case of p = m − 1, i.e. bn = bn−1 = · · · = bm = 0, bm−1 �= 0, from (4.9)

we obtain an = an−1 = · · · = am = 0, and


A1,i = 0, 2 ≤ i ≤ m − 1,

Ai,i = A2,2, 3 ≤ i ≤ m − 1,

Ai,i = A2,2 − bm−1A1,m, m ≤ i ≤ n,

b1 = a1, bi =
m+1−i∑

j=2

A2,jaj−2+i, 2 ≤ i ≤ m − 1,

A2,2 = 1 + (1 − b1 + bm−1,1)A1,m,

A2,3 = (1 − b1 + bm−1)A1,m+1 + (1 + bm−2)A1,m,

A2,i = (1 − b1 + bm−1)A1,m−2+i + (1 + bm−2)A1,m−3+i

+
i∑

j=4

bm+1−jA1,m+i−j , 4 ≤ i ≤ m − 1,

A2,i = (1 − b1 + bm−1)A1,m−2+i + (1 + bm−2)A1,m−3+i

+
m−1∑
j=4

bm+1−jA1,m+i−j , m ≤ i ≤ n − m + 2,

(4.11)

From this we obtain the following result.

Theorem 6. Any algebra C1(ai, m) with am−1 �= 0, am = am+1 = · · · = an = 0 is
isomorphic to one of the following non-isomorphic algebras:

C1
1(ai, m) :




a1 = a,

am−2 = −1,

am−1 = a − 1,

aj = 0 otherwise,

C1
2(ai, m) :




a1 = a,

am−1 = a − 1,

aj = 0 otherwise,

C1
3(ai, m) :




a1 �= 2,

am−1 = 1,

aj = 0 otherwise.
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Proof. From (4.11) it is not difficult to see that if bm−1 = b1 − 1 and bm−2 = −1,

then 


A2,2 = 1,

A2,3 = 0,

A2,i =
i∑

j=4

bm+1−jA1,m+i−j , 4 ≤ i ≤ m − 1,

A2,i =
m−1∑
j=4

bm+1−jA1,m+i−j , m ≤ i ≤ n − m + 2,

(4.12)

which implies am−1 = bm−1 = b1−1, am−2 = −1, and bi = ai+
∑m+1−i

j=4 A2,jaj−2+i,

for 2 ≤ i ≤ m − 3.

Putting

A2,4 = −am−3

bm−1
, A2,5 = − 1

bm−1
(am−4 − am−1A2,4),

A2,i = − 1
bm−1


am+1−i −

i−1∑
j=4

am−1−i+jA2,j


, 5 ≤ i ≤ m − 1,

we can suppose b2 = b3 = · · · = bm−3 = 0. Other parameters of the isomorphism
f can be found by (4.12) and (4.10). Thus, for any parameters a1, a2, a3, . . . , am−1

with conditions am−1 = bm−1 = b1 − 1, am−2 = −1, there exists an isomorphism f

from the algebra C1(ai, m) to the algebra C1
1 .

If bm−1 = b1 − 1 and bm−2 �= −1, then we have A2,2 = 1 and am−1 = bm−1 =
b1 − 1.

Putting

A2,3 = −am−2

bm−1
, A2,4 = −am−3

bm−1
, A2,5 = − 1

bm−1
(am−4 − am−1A2,4),

A2,i = − 1
bm−1


am+1−i −

i−1∑
j=3

am−1−i+jA2,j


, 4 ≤ i ≤ m − 1,

we can suppose b2 = b3 = · · · = bm−2 = 0. Other parameters of the isomorphism
f can be found by (4.12) and (4.11). Thus, for any parameters a1, a2, a3, . . . , am−1

with conditions am−1 = a1 − 1 there exists an isomorphism f from the algebra
C1
1(ai, m) to C1

2 .

Analogously, in the case of bm−1 �= b1 − 1 and bm−2 �= −1, putting A2,j

we can suppose b2 = b3 = · · · = bm−2 = 0 and bm−1 = 1, which derive the
algebra L1

3.
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Now consider the case p ≥ m, i.e. bn = bn−1 = · · · = bp+1 = 0, bp �= 0, then
from (4.9) we obtain an = an−1 = · · · = ap+1 = 0, and


A1,i = 0, 2 ≤ i ≤ p,

Ai,i = 1, 2 ≤ i ≤ p,

Ai,i = 1 − bpA1,p+1, p + 1 ≤ i ≤ n,

b1 = a1, bi = ai +
p+2−i∑

j=p+3−m

A2,jaj−2+i, 2 ≤ i ≤ m − 1,

A2,p−m+3 = (1 − b1 + bm−1)A1,p+1,

A2,p−m+4 = (1 − b1 + bm−1)A1,p+2 + (1 + bm−2)A1,p+1,

A2,i = (1 − b1 + bm−1)A1,p−1+i + (1 + bm−2)A1,p−2+i

+
i∑

j=4

bm+1−jA1,p+1+i−j , 4 ≤ i ≤ m − 1,

A2,i = (1 − b1 + bm−1)A1,p−1+i + (1 + bm−2)A1,p−2+i

+
m−1∑
j=4

bm+1−jA1,p+1+i−j , m ≤ i ≤ n − m + 2.

Similar to Theorem 6, we obtain the following result.

Theorem 7. Any algebra C1(ai, m) with ap �= 0, ap+1 = ap+2 = · · · = an = 0,

p ≥ n is isomorphic to one of the following pairwise non-isomorphic algebras:

C1
1(ai, m, p) :




a1 = a,

am−2 = −1,

am−1 = a − 1,

aj ∈ C, m ≤ j ≤ p,

aj = 0 otherwise,

C1
2(ai, m, p) :




a1 = a,

am−1 = a − 1,

aj ∈ C, m ≤ j ≤ p,

aj = 0 otherwise,

C1
3(ai, m, p) :




a1 �= 2,

am−1 = 1,

aj ∈ C, m ≤ j ≤ p,

aj = 0 otherwise.
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