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M3B. Ακβ«. HayK CCCP Math. USSR Izvestiya
Cep. ΜπτβΜ. TOM 49(1985), JNb 5 Vol. 27(1986), No. 2

GENERALIZED CASIMIR ELEMENTS
UDC 512.554.342

A. S. DZHUMADIL'DAEV

ABSTRACT. A method is given for constructing a central element in the universal
enveloping algebra 2t(L) of a Lie algebra L, generalizing the method for constructing
a Casimir element and not requiring the existence of a nondegenerate invariant form
on L. Generalized Casimir elements are constructed for certain Lie algebras of Cartan
types over a field of positive characteristic.

Bibliography: 15 titles.

In the calculation of the center 3(L) of the universal enveloping algebra 2l(L) of a
Lie algebra L an important role is played by methods of constructing central elements
in 3(L). The following method of constructing a central element in the case where L
possesses a nondegenerate invariant form ( , ) is well known. If V(L) = {ei\i Ε 1}
is a basis in L and V(L) = {ej € L|(e^,ej) = Sij, i,j £ /} is a dual basis, then
the Casimir element £],· e ^ is central. In this paper we give a generalization of this
construction that does not require the existence of a nondegenerate invariant form on
L. Interesting examples of generalized Casimir elements arise in the case of simple
Lie algebras of positive characteristic. Recall that almost all nonclassical simple Lie
algebras known up to now are Lie algebras of Cartan types [1]. For many nonclassical
simple Lie algebras every invariant form is degenerate. Nevertheless, among them occur
algebras possessing nontrivial central elements. Such, for example, is the Zassenhaus
algebra (among the nonclassical Lie algebras, Wi(m) is the only one for which the center
3(^1 (m)) has been described completely; see [2]-[7]). We will give a simple method for
constructing nontrivial central elements in terms of generalized Casimir elements both
for the Zassenhaus algebra and for some other Lie algebras of Cartan types.

§1. A generalized Casimir element

We endow 2l(L) with the structure of an adjoint L-module. Suppose Μ is an L-module
relative to the representation χ —> (χ)Μ, Μ1 is a dual L-module, β: Μ χ Μ' —> Ρ is the
natural pairing, V(M) = {vi\i e /} is a basis in M, and V(M') = {υ'^Β^,ν'^) = Sij,
i,j G /}, where <5tJ is the Kronecker symbol, is a dual basis. Let M Q = (»£ M\x(v) = 0,
χ G Q) be the space of invariants relative to the subalgebra Q (here and below, in
notation like (X)MV the symbol Μ is omitted). A Lie algebra L will be called Casimir
(more precisely, M-Casimir) if there exist L-module homomorphisms F:M —> 2l(L)
and F':M' —> 2t(L). Then these homomorphisms can be extended to an L-module
homomorphism

F <g> F': Μ ® M' =* End Μ -> 2((L), υ ® v' ·-> F(v)F'(v'),
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392 A. S. DZHUMADIL'DAEV

where ( E n d M ) L is mapped into 3(L). The element

corresponding to the identity endomorphism in Μ (it does not depend on the choice
of basis in Μ and M') is called a generalized (more precisely, Μ-generalized) Casimir
element.

The L-module 21 (L) contains the L-submodule L in a natural way. Therefore if the
L-module A(L) contains a submodule isomorphic to the coadjoint module L', then,
identifying it with L', we can consider the L-generalized Casimir element

where ê  € a(L) and Β(ε^,β^) = 6ij. In particular, if L possesses a nondegenerate
invariant form, then the adjoint L-module is isomorphic to the coadjoint module and
this element is a Casimir element. Assume that the characteristic ρ of the ground field Ρ
is positive, and let R{L) be a minimal p-hull of the Lie algebra L [8]. There is a natural
embedding of the L-module R{L) into 2l(L). Therefore if the L-module 2l(L) contains an
L-submodule isomorphic to R{L'), we can construct i?(L)-generalized Casimir elements.

If ρ > 0, the algebra 3(L) contains the subalgebra 3o(L) = (xp - x^\x e R(L)). We
will call ζ € 3(L) a nontrivial central element if ζ φ 3o(£)· Let 3(L) and 3o{L) be the
fields of fractions of the rings 3(L) and 3o(£)·

PROPOSITION 1. If L is a finite-dimensional Casimir Lie algebra, then there exists
a finite set of generalized Casimir elements generating 3(L) over 3o(£)·

PROOF. Suppose c = ^ _F(?;;).F(i^) is a generalized Casimir element. Note that for
any ζ € 3(L) the element zc = *52i{zF{vi))F'{v'i) is a l s o a generalized Casimir element.
It is known that the rank t — [3(L):3o(^)l < °° ( s e e [9])· Suppose zi,...,zt € 3(L)
generate the field 3{L) over 3o(L). Then the new generators cz\,... ,czt are generalized
Casimir elements.

CONJECTURE. Suppose L is a finite-dimensional Lie algebra over an algebraically
closed field Ρ of characteristic ρ > 5. If L is Casimir, then as generators of 3(L)
over 3o{L) we can take a finite set of generalized Casimir elements. Moreover, if 3(L)
contains a nontrivial central element, then L is Casimir.

Let 2l(L) = 2t(i?(L))/3o(£) be the restricted universal enveloping algebra of the Lie
p-algebra R(L); we will call it the u-universal enveloping algebra of the Lie algebra L.
Let ~b{L) be the center of 2l(L). If there exist L-module homomorphisms F: Μ —» 2l(L)
and F~':M' -»• 2l(L), then, as above, the central element c = Z ^ K ) - F ' K ) e 3(L)
is called an M-generalized Casimir w-element (in the future the Μ and u will often be
omitted).

Suppose the elements l\,... ,ln form a basis in R{L). Then in 2l(L) we can choose
the basis {/α = Π ί ' Π 0 <oti<p,i=l,...,n}. Let e = (p - 1,... ,p - 1). We define a
linear mapping φ: 2t(L) —> Ρ by the rule φ: la >—> 0, α Φ e, φ: le >-* 1. Assume that for
all / G R(L) we have

It was shown in [10] and [11] that the bilinear form

Φ: a(L) x a(L) -^ Ρ, Φ(Μ, υ) = φ{ην),
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is symmetric, nondegenerate, and L-invariant. Thus we have

PROPOSITION 2. If a finite-dimensional Lie algebra L satisfies (*), then it is u-
Casimir: the L-module 2l(L) contains an L-submodule isomorphic to V'. In particular,
a Lie algebra that is equal to its commutant is u-Casimir.

It is obvious that a generalized Casimir u-element of such Lie algebras has the form
dim i?(L)/e. In general, le ε 3(L) if (*) holds. Later we will construct more interesting
examples of generalized Casimir u-elements.

§2. A nondegenerate invariant form in the space
of exterior differential forms

We introduce the following notation: (X) is the linear span of the set of vectors X, I
is an index set of order |/|,

Γ,(ηι) (= r t /,(m)) = {a = (..., a2,.. .)|0 < a, < pm\ i e I},

where m = (..., rrii,...), m, ε Ν, and

. . . , ο , ι , ο (
i

Throughout this section, L is a Lie algebra of Cartan type, U is a natural L-module,
Μι, . . . ε L, and u,v,... ε U. The module U has the structure of a commutative
associative algebra. A module Μ will be called an (L, i/)-module if the L-module Μ
has the additional structure of a module over the algebra U and satisfies the condition
l(ua) — l{u)a + ul(a), a G M. Recall that in the divided power algebra

Oj{m) (= Om(m)) = (z™ = Π Ζ Η Ω € Tj(m)

multiplication is defined by the rule

Let
Ω * ( π » ) = ( x { a ) d x t l A - - - A d x i k \ i i <••• <ik, α £ Γ η ( τ η ) ) ,

the space of exterior differential A;-forms, and let d:Q^(m) —> fi^+1(m) be the exterior
differentiation operator in Ω^(τη) = φ ^ Ω^(τη). By analogy with the characteristic zero
case, the cochain complex (ί}^(τη),ά) will be called the de Rham complex. Let Zk(fl) =
(ω e Q^(m)\doj = 0) be the space of closed fc-forms (fc-cocycles), Bk(il) — (άω\ω €
Ω*""1(η»)) the space of exact fc-forms (fc-coboundaries), and Hk(n) = Zk(U)/Bk(U) the
fc-homology space of the cochain complex Ω*(τη) (de Rham fc-cohomology). Recall that
in the characteristic zero case the Hodge inner product in the space Ω*(Χ) of differential
forms on the variety X is given by the bilinear form A defined by Α(ω,ω') = fx(ui Α *ω').
In this section we will construct a modular analogue of this form.

The complex Ω£(»ι) has the structure of an (Wn(m), On(m))-module, where

Wn(m) = (x^dt\a € r ^ m ) , / = {1 , . . . , n})

is a general Lie algebra of Cartan type (see [1] for details). Therefore we can impose on
Ω^(ηι) the additional structures of Wn(m)-modules by means of the rule

l)w, tEP.
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We denote these modules by (W^(m))t- Exterior multiplication in the Grassmann algebra
Ω* (m) is coordinated with the actions of the Lie algebra and the coboundary mapping
by means of the following conditions:

1{ωΑω') = 1(ω)Αω'+ωΑΐ(ω'), (1)

Consider the mappings

π: O^m) -* Ρ, π: J2 λαχ(α) -" Ae,
α€Γ,(πι)

σ: Ω"(ηι) —> Ρ, σ: udx\ Λ · · · Λ dxn —• π(κ).

Note that the space Ηη(Ώ) is one-dimensional and is generated by the class of the form
x^dxi Λ • · • Λ dxn. Since the action of Wn(m) on H*(il) is trivial, we have the relation

σ(1ω) = 0 , ω G Ω£(τη), I G Wn(m)

(this can be verified directly: l(udx\ Λ · · · Λ dxn) = (l(u) + (Divi)u) dxi Λ • · · Λ dxn). It
then follows from (1) and (2) that the form A: ft^m) χ Π^(τη) —> Ρ defined by the rule

Α{ω,ω') =σ{ω Α ω')

is nondegenerate and invariant under Wn(m), On(m), and d:

ΑΙΙω,ω') + Α(ω, Ιω') = 0, leWJm),

ϋ(Μω,ω') = Α(ω,ηω'), u G On(m),

i?(do;, ω') + (-l) f cu(W, dw') = 0. (4)

It follows from (3) that the form

At- {Cl*n(m)t χ (Ω*(η»))_4 -»· Ρ, Λ(ω,ω') = σ (ω Λ ω'),

is also invariant under Wn{m).
It is easy to show that the linear mapping

/ i*i^2 ' / y ~^-) UidXl A • * * A dXi A · * · A GtXn fc i ' n \ " ^ J

i i

defines an isomorphism of the H/

n(m)-modules Wn(m) and (Ω"-1(»η))_ι (the roof ~
signifies that the corresponding element is omitted). The elements

Dij{u) - di{v)dj - dj(u)di G Sn{m) = {I G Wn+i(m)| Divi = 0)

are sent into the differential forms (-iy+J d(udxi A- • -AdxiA- • -Adxj A- • -Adxn+i). The
simple Lie algebra 5n(m) is generated by the elements Dij(u), i < j . Put B^+1(m) =
B*(Cln+i(m)). Then the 5n(m)-modules Sn{m) and B%+1(tn) are isomorphic.

On the other hand, the existence of a nondegenerate invariant form

shows that the Wn(m)-modules (Ω^"1(ίη))_ι and (Ω^(τη))ι are dual. Thus the Wn(m)-
module (Ω^(ΓΗ))Ι is isomorphic to the coadjoint module. Also,

Α(άω,ω') = 0 , w e ni~\(m), ω' G Ζ1(Ωη+1(ιη))

(according to (4)). Since B%+1(m) = Ull+1(m)/Z1(Qn+i(m)), this means that the
5n(m)-modules B"+ 1(m) and B%+1(m) are dual. Consequently, the 5Tl(m)-module
Bn+i(m) ls isomorphic to the coadjoint module.
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For the Hamiltonian Lie algebra

Hn{m) = (xM\aerI{m), a^0,e, I = {±1,... ,

the natural Hn(m)-module is isomorphic to the adjoint module: L = Hn(m), U
O2n(m), a n d l(u) = {/, u}. S i n c e x^ (£ [L, L], t h e f o r m B:Lx L-> Ρ d e n n e d b y

Β(/,/ι) = π(Η1)

is nondegenerate and invariant, i.e., Hn(m)' = H^m).^1)
In the contact Lie algebra

multiplication is defined by the rule

When η Ξ -2 (modρ), the algebra Kn+1(m) has an ideal of codimension 1: Kn+i{m) =
(a;(a^|a ^ e, a £ f/(m)). Let ί/t denote the /in+i(m)-module defined in the space
U = 02n+i(n») by the rule

(l)tu={l,u} + (t-2)d0(l)u, t£P.

Note that the adjoint L-module is isomorphic to f/2, and the natural L-module is equal
to UQ. It is easy to see that

n((x^)tx^) = -6a+0,e+£o(t + 2(n + 1))(-1) | β |, α,β€ Tj(m),

[I, uv] = [I, u]v + u[l, v] - 2do(l)uv, u,v &U0, I G L.

Consequently for any l,uG L and ν € Ut, we have

π([1, u]v) + n(u((l)tv)) = π ([I, uv} + tdo{l)uv) = (t + 2(n + 2))A(/, u, v),

where X(l, u, v) G P. In other words, the form

S : L x t / _ 2 ( n + 2 ) ^ P , B(l,u)=n(lu),

is invariant and nondegenerate, i.e., Kn+i(m)' = (O2n+i(m))_2(n+2)·
Let us summarize what we have obtained.

PROPOSITION 3. For any 0 < i < η and t e Ρ we have a Wn(m)-module isomor-
phism (Q^lm))^ = (n"~ l(m))_t· For a simple Lie algebra L of Cartan type over a
field Ρ of characteristic ρ > 3 the coadjoint L-module L' and the corresponding pairing
B:L χ L' —> Ρ are defined by the following rules:

Wn(m)' -

Sn(m)' = B»

(1)v4dc(e£i in proof. After the present paper was submitted for publication there appeared that of
Ya. S. Krylyuk [15], in which were also described the coadjoint representations of Lie p-algebras of Cartan
types, except for the contact algebra.
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in the cases of Hamiltonian and contact algebras the adjoint and coadjoint modules can
be defined over the same space and the pairing β given by B{l,u) = π(1ιι):

Hn(m)' = Hn{m)-

Kn+1{m)' = (02n+i("i))_2(n+2)> n ^ ~2 (modp);

Έη+1{πι)' ^O2n+1(m)/P, η Ξ - 2 (modp).

COROLLARY. The simple Lie algebras of Cartan types over a field of characteristic
ρ > 3 with nondegenerate invariant forms are exhausted by the following list: Wi(m)
(p = 3), S2(m), Hn(m), Kn+i(m) (n = —3 (modp)). Any nondegenerate invariant
form of these algebras is symmetric and differs from the following forms ( , ): L χ L —> Ρ
by nonzero factors:

L = W^m) = (ex = x^+1)d\ - 1 < i < pm - 2), ρ = 3;

(A,»,A»)=0, L = S2(m),

where i, j , k are distinct elements of the set {0,1, 2} and sgn ( i

 1

 k) is the parity of the

permutation (° x ^) ; for contact and Hamiltonian algebras the form ( , ) is defined by

( * Λ ) = π ( Η ι ) .

PROOF. A Lie algebra of Cartan type has a grading L = ®r

i=zqLi. Let V{Lq) =
{Di\i e /} be a standard basis of the subalgebra Lq, and let £_ = @^lqLi (see [1] for
details). If I s Li, we will write |/| = i. We will say that / is integrable with respect to £>i
and write /' = \Λ if [δ^,/'] = I- We will call / strongly nonintegrable if / φ [b,L] for all
0 £ £,-• Suppose Γ is a standard torus and V(L) a basis in L. Then we can choose /̂  /
for / e V(L) so that | jA\ > \l\. In particular, the sets of strongly nonintegrable basis
elements and basis elements of the subspace Lr are the same. Suppose ( , ): L χ L -> Ρ
is a nondegenerate invariant form on L. For any 0; € V(Lq) we choose £)* S V(L) such
that (Οί,Ο*) -ψ 0. Then 0* is strongly nonintegrable, since in the case 0* = [ϋ,Ι], I e L,
0 6 L , we would have (i>i,[0,Z)) = ([0»,0],/) = 0. Thus D* e Lr. Moreover, for any
h G Τ C LQ we have

As can be seen from the results of [1], the situation where the basis vectors 0; € Lq and
0* £ Lr satisfy these two conditions can arise only in the following cases:

L Wi{m), p = 3 S2(m) Hn{m) Kn+1(m), η Ξ - 3 (modp)
(ί>2,£>*) (d,z(Pm-Da) {duDjtixM)) (Xl,x^^) (l.iW)

ϊφΐφ k, i φ k.

It follows from Proposition 2 that in these cases nondegenerate invariant forms do exist.
REMARK. Nondegenerate invariant forms of the Lie algebra Hn(m) and of the Lie p-

algebra S^l, 1,1) were constructed earlier in [12]. Analogous forms can be constructed in
the characteristic zero case: the Lie algebras of smooth solenoidal vector fields on a three-
dimensional sphere and of Hamiltonian vector fields on an even-dimensional sphere have
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nondegenerate invariant forms. Nondegenerate forms can be defined as in the modular
case, if in the role of a strongly nonintegrable element x^ €E U we take Y[i x~l •

§3. Central elements in the universal enveloping algebra
of a Lie algebra of Cartan type

For ί e ί we denote by Ad/ the adjoint derivation in 2l(L) (and in 2l(L)). For
a G Γ/(τη), / = I(L), we consider the endomorphism Da: 2t(X) ·—> 2l(L) defined by

a' if L = Wn(m),Sn(m),

) 0 - iSL = Kn+1(m),

i.e., in our definitions of Lie algebras of Cartan type

T· if L = Wn(m), Sn(m), Hn(m),

= \d%°ll(dix-ldo)a> if L = Kn+1(m).

The endomorphism Da: 2l(L) —* 2l(i) is defined analogously.

THEOREM 1 (p > 3). If L is a simple Lie algebra of Cartan type, the following
elements lie in the center

L = Wi{m) = (et = x(l+1)d\ - 1 < i < pm - 2),

Ο < t < m, (6)

\
L ey (ΜΛ_ \ r~\e I \ "* ( e ) i i α /" f β ) \ ci I f*r\

= O2(,"^Ji C = U I > Sgn^X^ ^7(0)^7(1) l*̂  Jc''7(2) I (,'J

(ifte summation extends over all permutations 7 = ( ?0> λ> ?2.) e ^3),

L = Hn(m), c = De((x^)2), (8)

L = /ifn+i(m), η ^ - 2 (modp), c = £ » ε ( ( ^ ) 3 + 1 ) , (9)

where s satisfies the condition s{n + 2) = - 1 (modp). These and the elements listed
below lie in the center ~b[L):

L = Wn(m), η = -2 (modp), c = De ΙΤΤ(ζ(β)3,·) ) , (10)

= Sn(m), c = l W n ( A j ( s ( e ) ) ) ] , (11)

= Hn(m), c = ir

L = /fn +i(m), η Ξ - 2 (modp),
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x{e)De Ι (χ(6-ε°))Ρ-3 Y[{x^-^)p-1 I . (13)

I
PROOF. The coadjoint L-module V is a homomorphic image or submodule of the

L-module induced from the £o-module L'q, where q is the depth of the grading in L
(Proposition 3). Note that CiL'q = 0 and D, ο {DaX)' = -{Da-^X)', where ϋτ €
V{Z-), a.i > 0, X S V(Lr), and DaX φ 0. The following mappings are L0-module
homomorphisms /': L'q -+ 2l(L)£ ' or /': L'q -

L = S2(m), f'(%) - Djtk(xM), z^j^k,i^k,Sgn(°. l. Λ

L = Hn(m), fW = xl-ei)),

L = Kn+1(m), n^-2(modp), f(l') = (x(e))s,

L = Wn(m), η =-2 (modρ), / '(^)

L = Kn+1(m), η = -2 (modp), / ( I ' ) =

Consequently, the rules

L = W^m), F'(et) = (-l) l

L = Hn(m), F'(z ( a ) ) = (-l)i&

L = K n + 1 (m), η ̂  -2 (modp),

), η Ξ -2 (modp), ^(χ(°^<) = (-l)^Da

L = Kn+i{m), η Ξ - 2 (modp),

] α φ e,

define L-module homomorphisms F': L' —> 2l(L) or F : L' —* 2l(L). Since

χ , y e a(L) or x, y e

this means that the elements (5), (8), (9), (10), and (13) are central.
In case (7) this argument shows that c G 2t(W3(m))S2(m). We will prove that c

)· We decompose c into a sum of elements c\ and c2, where

(m),/3i=0

Σ (-ΐ)""
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(the symbol Σι signifies that the summation extends over all i,j, k €E {0,1,2} such that
sgn (? 1 2

k) = 1). It is clear that ci € 2t(52(m)). Using the replacement β — a + ε,,
where 0 < a8 < pmi — 1, as is easily seen, we can represent c2 in the form

c2 = ^ ( - l ) l [ ' l ( - D , J ( x a + e ' + ^ ) u 3 > ( x ( e - a - e ' ) ) + u , , f c ( ^ + £ ' + e t ) O l , i ( x ( e - a ^ t ) ) ) .
a

Thus c2 € 21(52(τη)), and hence c € 3(S2(m)).
In cases (11) and (12) the embedding f :L'q —> 2l(L)£l is defined in a somewhat more

complicated fashion, and the centrality of these elements can be established more simply
as follows. Note that De(L) = 0, and for X = Ui<j Di,j(x{e))p~1 w h e n L = Sn{m),
X = Yli(x(e~s'})p~l when L = Hn{m), we have X e a(L)£°. Consequently, for any
Di GV(£-) we have

[0,,c] = O f ' ^ ( ' ' ( X ) = 0,

Also, for any Υ £ Lr

= 0,

since £>eF = 0 and £ ) ε " α Γ ^ £0_if a / 0 . Thus [L,.,c] = 0 and [£_,c] = 0; hence
[L,c] = 0. Therefore c = £>e(X) e 3(i) .

Suppose L = Wi{m), m > 1. Consider the subspace Μ = {ep_1,ei\ - 1 < i < pm — 2)
in the minimal p-hull /2(L). Note that Μ has the structure of an L-module, and the
L-module Μ' is defined by the rules

eioe'_1 = -Slt-1e'o + 6lfie'_1 +5<,ρ«-ι(«£\)',

It is easy to verify that the element

z-^Aae_ij l.ep">-2 )epm-2

possesses the following property (see [4], Lemma 2):

[e;, z] = -Si^ii-le-u «1) + tfiiOz - i<,pt_ieJ™_2, - 1 < i < pm - 2.

Thus the rule

'^Y) p ' O + 1 _ 1 r + 1 ^ ) , - 1 < i < pm - 2,

defines a homomorphism of the L-module M' into 2t(L). It is obvious that Μ is an
L-submodule of 2l(L) and that ct is an M-generalized Casimir element. This completes
the proof of the theorem.

REMARK 1. The fact that ct 6 3(1), 0 < t < m, in the case L - Wi{m) was
established earlier in [4], and in cases (8) and (9) the inclusion c e 3(£) was noted in
[13] and [14].

REMARK 2. Suppose L is a Lie algebra of Cartan type of depth q and Hom£,0 (Μ, Ν) is
the space of Lo-homomorphisms Μ —• iV, where Μ and ./V are Let-modules. Let C be the
space of //-generalized Casimir elements (we will assume that zero is also a generalized
Casimir element). As can be seen from the proof of Theorem 1, there is a homomorphism

HomLo(L'%(L)c>) ^ C.
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Thus to describe the generalized Casimir elements it is first necessary to find the space
2l(L)£ l. In the proof of Theorem 1 we used the fact that ^(L)^1 contains the space of
polynomials P[Lr].

Analogously, if C is the space of L-generalized Casimir «-elements, then there exists
a homomorphism

HomL o(L',,2i(L)£ l)-+C.

Received 19/SEPT/83
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