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It is reasonable to distinguish two kinds of Lie algebras of Cartan type. The first one is defined by 
means of algebras of formal power series. In order to define Lie algebras of Cartan type of the second 
kind, it is necessary to consider algebras of formal Laurent power series. For example, the one-sided Witt 
algebra (the Lie algebra of formal vector fields on the real line) 

W + = (ei l [e/ ,  ej] = (j - i ) e i + j ,  i ,  j > - 1 ,  i ,  j e Z) 

is of the first kind, while the two-sided Witt  algebra (the Lie algebra of formal vector fields on the circle) 

W1 = (ei ] [ei , ej] = (j  - i )e i+j ,  i ,  j E Z) 

is of the second kind. It is known that the Lie algebra W1 possesses a nonsplittable central extension (the 
Virasoro algebra) 

V1 = ( e i , z  ] {ei, ej} = (j - i)ei+j + 5i+j,o(i a - i ) z ,  i ,  j e g). 

The Lie algebra W + has no such extensions. Actually, many facts are known on the cohomoIogy of Lie 
algebras of the first kind (see, e.g., [1]); in particular, they possess no nontrivial central extensions, except 
the Hamiltonian algebra that has a one-dimensional central extension (the Poisson algebra). 

Therefore, the natural problem on central extensions of Lie algebras of Cartan type is of interest only 
for Lie algebras of the second kind. It turns out that our hope to find new central extensions is justified: 
Lie algebras of formal divergentless vector fields and Hamiltonian vector fields possess nontrivial central 
extensions (Theorem 1). The method of calculating the second cohomology group is based on Proposition 1 
of [2], which reduces the computation of HZ(L ,  C) to the study of the first cohomology group of the 
coadjoint representation H a ( L ,  L ' ) .  Following this line of reasoning, the first groups H i ( L ,  L') for Lie 
algebras of Cartan type of the second kind are described; in particular, the Lie algebras of outer derivations 
for the Hamiltonian algebra Hn and for the special Lie algebra Sn are determined (Theorem 2). 

1. S t a t e m e n t  o f  t h e  m a i n  resul t .  Let U = C[[xi :kl I i E Il l  be the algebra of formal Laurent 
power series in variables xi with indices from the set I .  We write 

, 0 , 1 , 0 ,  ,0), o=  x ° = I I  °' • . .  . . . .  - -  X i ~ O~ ~ O ~ i g i ,  O ! i  C ~ .  

i i i 

Let Oi = d/dx i  be the derivation of the algebra U : 

O i ( x  = 

The general Lie algebra of Cartan type Wn is defined as the Lie algebra of derivations of the algebra 
C[[x~ 1 ] i = 1, . . . ,  a l l .  The remaining three series of Lie algebras of Cartan type are defined as 
subalgebras in the general Lie algebra in terms of their actions on certain differential forms. Without 
going into the details of known definitions, we now give the definitions of these algebras in a convenient 
form. Note that in each particular case the meaning of I will be clear from the context. 

The special Lie algebra 

S,~ = (D e W~+I [ D i v D  = E 0 i ( u i )  = 0, I = {0, 1 , . . . ,  n}}, n > 2,  
i 

is not simple• Its commutant S= = [Sn, S,J is a simple Lie algebra. 
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We define the Hamiltonian algebra on the algebra of Laurent series 

# .  = <x"l~ ¢ 0, I = { - t - 1 ,  . . .  , - t - n } } ,  

with respect to the Poisson bracket 

{,~, v} = - } 2  sg~io,(~)o_,(v) .  
i 

n > _ l ,  

This algebra has a one-dimensional center, and the corresponding quotient algebra Hn = H~/(1) is simple. 
Finally, we define the contact Lie algebra on the algebra of Laurent series with odd number  of variables 

I£n+l = (=~ I Z =  { 0 ,  -F1, . . . , - l - n } > ,  n > _ 1, 

i#0 \ i#0 / 

For u E U ,  denote by 7r (u) the coefficient of x ° in the expansion of u with respect to the basis. 

T h e o r e m  1. Let  L be one of  the s imple Lie  algebras of Ca f tan  type listed above. Then  H 2 ( L ,  C) = 0 

except in the fo l lowing cases: 

L basic cocycles dim H 2 ( L ,  C) 

W1 (uO,  vO)~-+ 7r(uOa(v)) 1 

Sn ( D 1 ,  D 2 ) ~  7 r ( x 7 1 x y l ( m 1 ( x i ) D 2 ( x j ) -  D l (x j )D2(x l ) ) )  (n + 1 ) n / 2  

H n (72, V) I---+ 7r(xTl(uo_i(v) -- vO_i(u))),  2n 4- 1 
(~, v ) ~  ~(x°{u, v}) 

2. C o a d j o i n t  r e p r e s e n t a t i o n s .  Let f/* = (~)k f/k be the space of exterior differential forms with 
coefficients in U and with the exterior differential operator 5. Let us recall that  

f~O = u , fZ k = {72i~ .... ,i~ 6xi ,  A . . . A 6xik l i l  < " " " < ik , i~ , . . . , ix e I }  , k > O , 

and the operator 6: £Z k --~ fZ k+l is given by 

6 u = ~ O ~ ( u ) 6 x , ,  u e a  ° , 6 ( w A ~ ' ) = 6 ~ A w ' + ( - - 1 ) k w A 6 w  ' ,  w e a  ~. 
i 

Recall also that  the natural  action of W~ on U extends to an action of W~ in the space f~* by the rules 

D ( 6 u ) = 6 ( D u ) ,  D ( w A w ' ) = D w A w ' + w A D w ' .  

Let 

be the space of closed k-forms, let 
Bk(~-~) = ( ~  I ~ e ~-~k-1) 

be the space of exact k-forms, and let 

t E C .  

be the  twisted Kn+l -module  defined on 

H*(a) = @ H~(a), H~(a) = Z'(a)/B~(a), 
k 

be the space of de Rham cohomology. 
Equip ~k with another  Wn-module structure: 

(D)~w = n w  + t ( D i v n ) w ,  

Denote the module thus obtained by (~k) t .  Also, let Us 
U = C[[x~ 1 l i = O, i l ,  . . .  , in ] ]  by the rule 

(72),v = [72, v] + (t - 2)o0(~)v. 
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Proposition 1. 
formulas 

L~-- W n  , 

L =  S~, 

L =  H,~, 

L = Kn+l , 

Coadjoint L-modules L' and corresponding pairings 

= ( f ~ ) l ,  uiOi, visa i 
t 3 

L' = g . ,  (u, v) 

L' = U-2(~+~), (u, v) 

The proof is similar to the case p > 0 [3]. 

(L,  L I) -+ C are given by the 

= - 

= 

= 

Corol lary .  The Lie algebras $2 and H~ possess nondegenerate symmetric invariant forms. 

In the sequel the following analog of the Poincar~ 1emma is useful. 

Proposition 2. The space Hk(~)  of de Rham k-cohomology is generated by the classes of differen- 
tial forms x~ 1 . . . x~ lSx i~  A . . .  A 5xi~, il < . . .  < ik ,  these forms constitute a basis, and there is an 
isomorphism 

Hk(f~) -~ AkCVI, 

where If[ is the number of elements of the set I .  

3. Firs t  c o h o m o l o g y  groups .  

T h e o r e m  2. For a Lie algebra L of Caftan type, the 1-cohomology space H i ( L ,  L') of the coadjoint 
representation is trivial, except in the following cases: 

L 

w1 

H~ 

basic cocycles dim H I (L, L') 

uO ~ 03(u)Sx 1 

D e-~ D(x71x-~l~xi A 6xj) ,  (n + 1)n/2 + ~n'; 
Di,j(u) ~ ( -1)~5(A(u)Sx~) ,  (i - j ) ( i -  s)(j  - s) 7~ O, n = 2 

U ~ x-ilo--i(U), i = 4-1, . . . ,  4-n, 2(n + 1) 
u { x  o ,  

(2  - E ,  4 , )  

Corol lary .  For L = $2, the space of outer derivations Out L is four-dimensional, and the classes of 
derivations adz} - lx7  los ,  (i - j ) ( i  - s)(j  - s) 7~ O, and ad ~ i  xiOi constitute a basis; for L = H~ , this 

space is 2(n + 1)-dimensional, and the classes of derivations x ~ l o _ i  , adz  ° , and A constitute a basis. 

It can be proved that other simple Lie algebras of Cartan type, except S,~, possess no outer derivations. 
Before passing to the proof of Theorem 2, we recall some facts on cohomologies and on Lie algebras 

of Cartan type. Let M be an L-module, let H be a Caftan subalgebra in L,  and let C*(L,  M)  = 
@k Ck( L ,  M)  be the standard cochain complex of the Lie algebra L with coefficients in M and with 
coboundary operator d; let Zk(L ,  M)  = {~b e Ca(L,  M) I d~b = 0) be the space of k-cocycles, 
let Bk(L ,  M )  = (d~ ] ~ C C k - I ( L ,  X ) )  be the space of k-coboundaries, and let H*(L,  M)  = 
(~k Hk( L ,  M)  , H k ( L ,  M)  = Z k ( L ,  M ) / B k ( L ,  M)  , be the cohomology space of the L-module M .  
For example, the space Z2(L,  C) of 2-cocycles of the trivial module (Da = 0 for all D E L,  a E C) is 
generated by bilinear skew-symmetric mappings ¢ :  L x L -+ C such that 

¢ (D1 ,  [D2, D3]) + ¢ (D2 ,  [D3, DI]) + ¢ ( D 3 ,  [D1, D2]) = 0 ,  

and the space B2(L ,  C) of 2-coboundaries consists of skew-symmetric bilinear mappings df: L x L -+ C 
constructed from the linear functionals f :  L -+ C by the rule 

df([D1, D2]) = - f ( [ D 1 ,  D2]). 
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If L and M are semisimple H-modules ,  then  the H-module  C*(L,  M)  ~- A * ( L ' ) ®  M is also 
semisimple. Therefore C*(L, M)  can be decomposed into the direct sum of H-submodules  C~,(L, M) 
formed by H-proper cochains whose proper  values (weights) A are linear functions on H .  Moreover, 
C~,(L, M) = (~k Ck( L , M)  forms a cochain subcomplex with  zero cohomology for A # 0. Thus we have 

H*(L,  M)  ~- Hg(L ,  M ) ,  H~o(L, M) = Zk (L ,  M)/Bko(L,  M).  

In the sequel, replacing C*(L,  L') by C~(L, LO, we shall assume tha t  all cochains f • C I ( L ,  L')  under 
consideration satisfy the addit ional  condition 

h f (D)  = f ([h ,  D]) ,  Vh • H ,  VD • L. 

It is easy to see tha t  the  actions of s tandard  Caf tan  subalgebras H in L are semisimple in L and 
L ~ and that  the  s tandard  basis vectors are proper with respect to these actions. Let L = (~)~ L~ ,  
L' = L' (~a  a be the  corresponding decompositions. To be more precise, the root system forms an infinite 

-- -- ' the  linear functionals abelian group, and we identify it with Z dlmH _ Z (9 • ® Z .  Denote by a i 
H --+ C such tha t  e}(hj) = 6~,j ( the Kronecker symbol). Then  the root  subspaces L~ and the mappings 
T :  L ~ H ~, T ' :  L ~ --* H ~ tha t  map the basis vectors from L and L ~ into their  roots, are given as 
follows. 

L ._____ W n  , H = (hi = xiOi l i E I = {1, . . .  , n}) ,  L ,  = (xZOj I / % -  5i,y = o~i, i ,  j G I ) ,  

8 8 

L =  S~, H =  (hi = x i O i -  ZoOo l i = l ,  . . .  , n) , 

d e f  0 - -  - -  - -  , " , L~,= (n i , j (x  ~) = i(x~)Oj Oj(xZ)Oilfl  si ~j=_~(modO) i , j 6 I )  
n 

T (Di,j(x~)) = E( t3~ - 6i,8 - 6j,8)¢t8 ( rood0 ' ) ,  
8=0 

L = Hn,  H = (hi = x - i x i  [ i = 1, . . .  , n),  
n 

s = l  

n 

T'(6(x~6xj))  = E ( ~ 8  + ~j,8)e~8 (rood0')  ; 
8----0 

L,=(x~l~8-/~_8=,~8,  s =  l , . . . , n ) ,  

= 

L H / 7  
hi 

I i 1, = l"l.n.-t-1, = ( / ~ 0  = Z 0 ,  = X - - l X i  I = " ' "  ' h i ,  

L~ = (xZ ] 2 - 2 ~ o -  E fls=~o, f l s - f l - 8 = a s ,  s =  l ,  ... ,n>,  
8#o 

2-2Z0- Z8 
s¢O s=l  

Here in the case L = Sn ,  we mean  tha t  L (in particular,  H)  is embedded in W n +  1 and the root a is 
= ~ ' Thus,  L is a mul t igraded Lie algebra taken as the corresponding root  of W~+I modulo 0' - ~8=0 e8 • 

and L' is a mul t igraded L-module:  

[L~, L~] C_ L~+Z, L~ o L~ C L~+Z. 

Let U + = C [[xi I i 6 I]] be the  subalgebra in U consisting of formal power series, and let L + be the 
corresponding subalgebra (a Lie algebra of Car tan  type of the first kind) in L with  the s tandard  grading 

2 5 0  



L+ = (~t_>-2 L+ in L + : 

Z + = W + = (x~O~ I ~  >- o, i e I ) ,  

L+ = S+ = S .  n W : ~  , 

L + = H+ = (xe [ ~ ¢ ( o , . . . ,  o), ;3; > o, i ~ O ,  

L +=K++~=ix elfli>O, iEI), 

i 

Z~ Sn n + -~ (Wn~+l)t  , 

i 

i#0 

Introduce the subalgebra J(L) = @t<0 L+ • Note that  J(L) = L +_1 except for the case L = K.+~ , when 
we have J(L) = L~ 1 + L+_2. 

Recall that  for a subalgebra Q and an L-module M ,  the space of relative cochain complex 
C*(L,  Q,  M)  consists of cochains ¢ E C*(L, M)  such that  ~ b ( D , . . . )  = 0,  provided at least one 
of the arguments D belongs to Q.  Recall also that  the 0-cohomology space H°(Q,  M)  coincides with 
the space of invariants  M Q = (rn E M I qm = O, Vq E Q) . 

L e m m a  1. The following relations are valid: 

I t ° ( J (Wn) ,  W ' ) = ( A 1 ) a = ( b z i I i E  I ) ,  T ' ( S x i ) = e ~ + O ' ,  

H ° ( J ( S n ) , S ~ n ) = A 2 = ( h x i A h x j [ i , j E I } ,  7 " ( h x i A h x j ) = e ~ + c } ( m o d O ' ) ,  

H° (J (Hn) ,  H ' )  (xi [ i E I} , 7-'(x;) " ' = = sgn  z£ / ,  
! 

H ° ( g ( f ( n + l ) , - K ' t n + l )  = ( l> ,  r ' ( 1 )  = --2(72 + 2 ) £  0 . 

L e m m a  2. For a simple Lie algebra L of Cartan type (of the second kind) and its aubalgebra L + we 
have 

ZI(L, L + , L') = O. 

P r o o f .  Let ~b E ZI(L, L + , L') .  Then Ker~b = (D E L [ ¢ ( D )  = 0) _D L + . Below we shall construct 
the elements A; E Ker ¢ ,  i E I ,  that ,  together with L + , generate L .  The relation ¢ (A;) = 0 will follow 
from the cocycle condition of the form de  ( g i ,  A/+) = 0 for elements A + E L + such that  [A i, A +] E L+. 

For L = W ,  set A i = x ~ 0 i ,  A +=xaOi .  Since 

T(x[ lOi )  = -2e~, xaOi(L'__2~) C_ ( ( - 3  + 25,, i)x:lxOax, I s E I ) ,  

3 t we see that  the kernel of the mapping xiOi : L_2 ~, --+ L' o is zero. Hence, the condition K e r ¢  D L + 

and (1) imply the relation 0 = d e ( & ,  A +) = A+C(&)  :- ¢ ( A  0 = 0. Similarly, in other cases it is 
sufficient to set 

L = Sn,  Ai "---" x ' i l o i  71- X'~2XjOj,  

L = Hn , Ai = x i  l ,  

L = Kn+l , Ai = x-i -1 , 

A + a 4 -~ XiO j , XiOj 
3 A + = X_iX i , 

A+~ = x_;xo, x_ix~. 

i 7 ~ j ,  i , j E i ,  

L e m m a  3. For a simple Lie algebra L of Cartan type (of the second kind) we have H i ( L ,  J (L) ,  L') : 
O, except for the case L = W1, where H i ( W 1 ,  J ( W l ) ,  W~) -= (03:  uO ~ 0 a ( u ) 6 x  ] u e U) is one-di- 
mens ional .  

P r o o f .  Let ~b E Z I ( L ,  J(L) ,  L') .  By Lemma 2, we need consider only the case ¢ ~ Z I ( L ,  L + , L'). 
Then there exists a t > 0 such that  ¢ ( D )  ~ 0 for a certain basis vector D E Lt ,  but ¢ ( D )  = 0 
for all D E  L T, 0 < t < t .  Hence thecocyc le  condition d ¢ ( l , D )  = O, l E J (L ) ,  implies I¢(D)  = 
- ¢ ( [ l ,  D]) + D e ( l )  = 0. Thus, from (1) and Lemma 1 it follows that  ¢ ( D )  E (L') J(L) . 
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On the other hand,  for the nilpotent subalgebra £1 = ~ t > l  L+ we have 

~ ' L ~ + L :  for L = W ~ ,  
H1(/~1, C) £1/[£1, £1] l L1 in other cases, 

and 
d e ( D , / 9 )  = 0, D E L T ,  /9 E L y ,  0 < t , t ' < t  ',. ¢ ( [ D ,  D]) = 0. 

Thus, from (1) and Lemma 1 it follows that  only the following cases are possible: L = W1 , D = x3a 
and L = Hn, D = x_~XsXi for s ¢- - i .  Indeed, in the first case there arises a nontrivial cocycle ¢ 
such that  ¢ ( u 0 )  = 03(u)bx. The second case is impossible: the condition d¢(x2_~, x~xi) = 0 implies 

¢(x_~x~xi) = [z2_s, ¢(x]xi)] E (xi) ,  i.e., ¢ ( D )  = 0. 
P r o o f  o f  T h e o r e m  2. For L = INn by (1) we have: 

j 3 

because T(Oi) = - , : ,  L~_.: = (x=zlx;lx°bxj I J E I ) .  Moreover, 0 = d¢(Oi, aj) = 0 i¢(0 j )  - cOj~b(O,), 
i 7£ j --4- Ai,j = Aj,j/2, i 7£ j .  Finally, for L = Wn we have 

~)(Oi) = --OiQ ~. (,'~j,j/2)x;lxObxj) • 
2 

In other words, if we set f ~ j (Aj , j /2 )xy lx°bx j ,  then the cocycle ~ = ¢ + df is contained in 

ZI(L, L-1,  Lt). It remains to apply Lemma 3 to achieve the proof in the case L = Wn. 
Similarly, making use of condition (1), the cocycle conditions d e ( l ,  ~) = 0,  i ,  l" e J(L),  and the 

following facts: 

' (rood 0'),  L = Sn,  T(Oi) = - e i  

d(x:1x;15xi A bxj)Oi = 5(x~1x;15xj), adh(Oi) = -Oi (h = E xiOi) , 
i 

L = H , ~ ,  T ( x i ) = s g n i e ~ ,  x-~Oi(xi)_ =z-i,-1 adx°(x i )=+x °-~-', A ( x i ) = z i ,  i e I ,  

L = K~+I ,  T (1 )  = 2e~, 

we find that  for some f C CI(L, L') the cocycle ~ = ¢ + df satisfies the following conditions: 

L = S=, w(O~) ~ (5,~,20~, x.i-2x-j~bxi/x 5xj [J e z ) ,  i E I ,  

L H . ,  e x i • z 

L = K,~+I, 9(1)  = 0. 

In other words, adding to ~ a certain linear combination of cocycles described in Theorem 2, we obtain a 
cocycle belonging to the space ZI(L, J ( L ) ,  L ' ) .  Hence Lemma 3 implies that  the cocycle classes listed 
in the statement of Theorem 2 generate Hi(L,  L'). It remains to show that  they really form a basis. 

Since the case L = W1 is well known, we begin with the case L = S,~. Consider the exact cohomological 
sequence of the corresponding short exact sequence 

z ' ( a ) - -  0. 

We have 

0 ~ H°(L,  Be(a)) --~ H°(L, Z2(fl)) ~ H°(L,  H2(gt)) --~ HI( L , B2(a)) -+ . . . .  

By Proposition 2, the classes of differential forms x-[lx-~lSxi A 5xj, i < j ,  consti tute a basis of the space 
H~(~) .  Moreover, B~(~)L= Z~(~) ~ =  0 and the action of L in H~(~)  is zero, so H ° ( L ,  H 2 ( ~ ) ) =  
H2(~) .  Thus, the Bokshtein homomorphism 

d: H°(L,  He(a)) = H2(f~) = (x~lx;X(~xi A 5xi [ i < j) ~ Hi(L ,  B2(f~)) 
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is a monomorphism. This implies that the classes of cocycles 

D ~ [D, x T l x y l S x i  A 5xj], i < j ,  

forma basis of H ] ( S n ,  B2(f~)), n > 3. In the case n =  2 we note that the rule Di,j(u)  H (-1)85(uSx~) 
defines an isomorphism of modules 

$2 -- B2(f~) ((i - j ) ( i  - s)( j  - s) # 0). 

This isomorphism maps the classes of cocycles mentioned above into the exterior derivations ad x~'lx~lO~ 
((i - j ) ( i  - s)( j  - s) ¢ 0). The centralizer of the subalgebra $2 in W3 is zero, and this implies that the 
latter derivations together with the derivation ad h (h = E i  zioi) really constitute a basis in Out $2. 

Let L = H~. Suppose that for a certain linear combination o" = }-~4 aix--~Oi + badx°  + c A  we have 
-1 is zero and L contains o" = du,  u E L .  Since the projection of the subspace O_j(L ) onto the line x_ i 

no elements of the form x ° , it is evident that 

G(xj)  -= ajx_j-1 "4- bx°-~-J + cxj sgn jO_j (u)  ~ aj -.~ b = c = 0 , j E f.  [] 

P r o o f  of  T h e o r e m  1. From [2, Prop. 1] it follows that there exists an embedding H e ( L ,  C) --~ 
H i ( L ,  L').  To be more precise, H 2 ( L ,  C) is isomorphic to the subspace H i ( L )  generated by the classes 
of cocycles ¢ E Z a ( L ,  L') satisfying the relations (¢(I1),  /2) + (~(12), l]) = 0. It is easy to see that all 
cocycles mentioned in the statement of Theorem 2, except ad h (L = $2), and A (L = Hn), satisfy these 
relations. Consider the exceptional cases. Evidently, 

In, = (Io 1- 2)Di,j(x ), I 1= 
8 

Thus, the expression for L = 5'2 

([h, Di,j(x'~)], Di,~(x~)) + (Di,j(x '~),  [h, Di,~(x~)]) = +2([a[ + 1) 5,~+~,o+~, 

is not identically zero. The same is true for the case L = Hn : 

(ZX(x~), x ~) + (x~, A(x~)) = 2(n + 2)(-1)J~15~+~,0. 

The theorem is proved. 
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