
8. C las s i f i ca t ion  o f  s y m p l e c t i c  vec tor  b u n d l e s  N over C P  1 , the ir  L a g r a n g i a n  s u b s p a c e s ,  
and  l inear  S G - p r o c e s s e s .  By symplectic vector bundles of weight k (over CP 1) we will mean the 
normal bundles of sections in relative symplectic spaces of the corresponding weight k = 0, 4-1, 4-2, . . .  
(over the base CP 1) modulo the natural equivalence relation. These bundles have the following proper- 
ties. I. Each symplectic bundle N can be decomposed into the skew-orthogonal direct sum of symplectic 
2-bundles of weight k,  N = ~i~=10(al) + O(k - al). Denote by n(i) the numbers m i n { a j , k  - aj} 
(1 < i , j  <_ r) arranged in increasing order. II.  Any Lagrangian linear subspace L C N is equivalent to 
a fiber of one of the 2 r subbundIes Y ~ = ~-~i~=i ¢iO(ai) + (1 - ¢i)O(k - ai), where ¢i = 0, 1. I IL  An 

elementary linear SG-process ~ -~ N along L reduces k by 1 (Lemma 1) and transforms the numbers 
ai according to the rule ai = ai - (1 - ¢ i ) ,  1 < i < r.  This implies IV.  A linear SG-process ~ -~ N 
of height h (see §5) between two symplectic. 2r-bundles in item I exists if and only if [~ = k - h and 
n ( i ) - h  <_ ~(i) <_ n( i ,h )  : = m i n { n ( i ) , [ k / 2 - h / 2 ] }  for all i, 0 <  i < r .  

The author is grateful to D. V. Alekseevsky for valuable discussion. 
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Odd Central Extensions of Lie Superalgebras 

A. S. D z h u m a d i l ' d a e v  ¢ UDC 519.46 

The central extensions of Lie superMgebras calculated in [1, 7-10] are even. We present a characteriza- 
tion of odd central extensions of Lie superalgebras in terms of cohomology of Lie algebras. The calculation 
of the second cohomology group (more precisely, space) of a Lie superalgebra with coefficients in an odd 
module is reduced to calculating the first cohomology group of the even part of this superalgebra with 
coefficients in the dual module of the odd part. This simple fact permits us to interpret many of the known 
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central extensions of Lie algebras as odd supercentral extensions of the corresponding Lie superalgebras. 
For example, the central extensions of Lie algebras that  are Lie algebras of Hamiltonian vector fields, Lie 
algebras of differential and pseudodifferential operators, Lie algebras of generalized Jacobi matrices, and 
the Zassenhaus modular  algebra have superextensions only in the odd case. 

P r o p o s i t i o n .  Let L be a Lie superalgebra with even part Lo and odd part L1, let P be the ground 
field of characteristic p >_ O, and let L~I be the dual Lo-module of the Lo-module L1. The space of 
odd central extensions H~(L, P) is isomorphic to the subspace of n l (Lo,  L~) generated by the classes of 
cocycles f ~ ZI(Lo,L~) such that 

f ( [u ,v ] )w+f ( [v ,  w l ) u + f ( [ w , u l ) v = O  Vu,v ,  w e L 1 .  

By analogy with Lie algebra assigned to an associative algebra, we can assign to each associative 
algebra A a Lie superalgebra L(A): its even and odd parts regarded as vector spaces coincide with A, 
the multiplication in the even part  is introduced by the ordinary commutator,  the multiplication in the 
odd part  is defined as the product  [u, v] = (uv + vu)/2, and the action of the even part  on the odd one 
coincides with the adjoint action. With each 2-cochain ¢ of the Lie algebra A we can associate an odd 
2-cochain l(¢) of the Lie superalgebra L(A) by setting I(¢)(a, b) = 0 if the elements a, b ~ A as dements  
of the Lie superalgebra L(A) have the same parity and l(¢)(a, b) = ¢(a, b) if the parities are distinct. 

Let I be the set of indices ± 1 , . . . ,  ± n  and let 

U : C[[~~ 1 I i ~ I]] : {Z/~° t t °¢  I "~c~ ~ C' °z ~ r '  ~°t : ~Ii 

be the algebra of formal Laurent series with finite positive part (the number of nonzero ~ ,  c~ ~ P + , is 
finite), where 

r = {~ = (c~_,~, . . . ,  ~ )  I cq e Z, i e I},  r + = {c~ e I' I c~i _> 0, i e I}. 

Let Oi : u H 
commutat ive 
Hn) is called 
identification 

T h e o r e m  
The space of 
where ¢i are 

du/dti be partial derivation with respect to the ith variable. We endow the associative 
algebra U with the Poisson bracket ~ i  O-i A Oi. The resulting Lie algebra (we denote it by 
the Poisson algebra. Note that  the Lie superalgebra L(H,~) is well defined if we adopt the 
(L(H,~))I = Ha. 

1. Let P = C. Every even central extension of the Lie superalgebra L(H~) is splittable. 
odd central extensions HI(L(H, ) ,  C) is 2n-dimensional, and the classes of cocvcles /(¢i), 
basis cocycles of the space g2 (g~ ,  C) [3], form its basis. 

The space 

where 

U can be endowed with a different structure of associative algebra, which is not commutative: 

~oV~- Z 
aEI'+. 

Oe(u)Og(v) 

I'~n = {0~ = (0 1, . . .  , O n) I Z ,  i = 1 , . . . ,  n}, F ,  + = r , ,  >- 0},  
n f i  

O~ = l - [  0 ~  0 4 ~ ~! 11  - , ,  + = 0 i , = oq )! 
i = 1  i=1  i = 1  

The new algebra (denote it by Pdopn) is isomorphic to the algebra of pseudodifferential operators in n 
variables. Let Dopn be the subalgebra of Pdop, generated by the elements of the form t~_t~+, c~ E I',~, 
/~ E I'n+. It is isomorphic to the algebra of differential operators in n variables ~-1, . . . ,  *-n .  

T h e o r e m  2. The Lie superalgebras L(Dop,~) and L(Pdop~) have no nontrivial even central exten- 
sions. The classes oy cocycles l(¢i), i = 1 , . . . ,  n (for the definition of ¢i see [4]), form a basis of the space 
H~I (L(Dop,~), (2). In particular, the space of odd central extensions of the Lie superalgebru L(Dop,~) is 
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n-dimensional. The space of odd central extensions of the Lie superalgebra L(Pdop,~) is 2n-dimensional, 
and the classes of cocycles l(¢i), i = - t -1, . . . ,  +n, form its basis. 

The algebra of generalized Jacobi matrices gIj  consists of matrices X = (xi,j) with a finite number 
of nonzero diagonals: xi,j = 0 whenever li - j[ >> 0. It is proved in [2, 11] that the space H2(glj,  C) is 
one-dimensional and the class of the cocycle p defined by the rule p(X,  Y) = tr[R, X] Y,  where R = (rid) 
is a matrix such that ri,i = 1 for i > 0 mad ri,j = 0 otherwise, determines its basis. 

T h e o r e m  3. The space of odd central extensions of the Lie superalgebra L(glj) is one-dimensional, 
and the class of the cocycle l(p) of the Lie superalgebra L(gIj) forms its basis. The cocycle p of the Lie 
algebra gI j has no even superextension. 

Let U be an associative commutative algebra with derivation 0.  Let us endow its algebra of derivations 
with structure of a Lie algebra by setting [uO, vO] = nO(v)0 - cO(u)O. Denote the resulting Lie algebra 
by W.  We introduce a W-module Uq in the space U by the rule (uO)qv = nO(v)+ qO(u)v, q E P.  
Note that the adjoint W-module is isomorphic to U-1. It can readily be shown that the graded space 
L = W + U-I~2 becomes a Lie superalgebra if we define the symmetric mapping U-~/2 × U-i~2 --~ W 
by means of the commutative multiplication in U. For U = C[t +x] we obtain the Ramon superalgebra 
without center. The Virasoro-Gelfand-Fuks cocycle can be extended to the even cocycle 

v0) = ¢ ( , ,  v) = 

Here 7r(u) is the coefficient in x -~ in the element u for the case p = 0 and in x ' ' - ~  for the case p > 0 
and U = Oi (m) is the divided fraction algebra: For more detailed presentation of modular Lie algebras 
and their cohomology see [5, 6]. 

T h e o r e m  4. Assume that p >_ 3. Then the space of even extensions of the Lie superalgebra L(m) is 
one-dimensional and is generated by the class of the Ramon-Neveux-Schwarz cocycle ¢ for p >_ 5; in the 
case p = 3 it is (m - 1)-dimensional and is generated by the classes of cocycles c~, 0 < k < m,  defined 
a8 

O~k(~O, 730) : 7~(OP~(u)y), O~k(U,V) = 7~(OP~-I(?~)V); 

for p > 5 the space of odd extensions of the Lie superaIgebra L(m) is trivial; for p = 5 it is (m-1)-d imen-  
sional and is generated by the classes of cocycIes ~k , 0 < k <_ m,  given by the formulas 

Z (uO, v)  = 

for p = 3 it is one-dimensional and is generated by the class of a cocycle 7 such that 

 (uO, 
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