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Abstract. The first and second cohomologies of Cartan
Type Lie algebras with coefficients in irreducible
tensor modules are calculated. The space H'(L,U) is
interpreted as a space of deformations of (L, U )-modules.
H*L,L)#0if L=3S,,85 or L=H,, H, . Lie algebra of
divergenceless vector fields S; has only one nontrivial
local deformation. The two-sided simple hamiltonian al-
gebra H, has 2n? + n new local deformations in addition
to Moyal cocycle. The Lie algebras L = W, (n > 3),
S,-1n>2), H,n>1), K, i(n>1) have 3,1,1,3
nonisomorphic tensor modules with irreducible bases and
nonzero 1-cohomologies; respectively, the corresponding
numbers for 2-cohomologies are 9, 6, 7 and 9.

1 Introduction

The main applications of cohomologies of Lie algebras
H*(L, M) concern small k = 0, 1, 2, 3. The gauge group of
cohomology introduced in physics by Faddeev [7] is
related to the cohomology of the gauge Lic algebras [24].
Wess-Zumino functional is interpreted as a 1-cocycle of
the space-time gauge group [23] and Schwinger term
as a 2-cocycle of gauge group [25]. Abelian extensions
appear in gauge theory and in gravitational theory. A
3-cocycles concern to the failure of the Jacobi identity in
the presence of a Dirac monopole. Such fundamental
results of the theory of finite-dimensional Lie algebras as
Levi-Mal’cev theorem (any Lie algebra is a sum of
a semisimple subalgebra and the radical) and Weyl the-
orem (any representation of a classical Lie algebra is
a direct sum of irreducible representations) mean that, for
a semisimple Lie algebra L, the first and second co-
homologies with coefficients in irreducible modules are
trivial.

In the nonclassical case both of these results are not
true, but counterexamples to these facts also have impor-
tant applications. Well known example of nonsplit exten-
sions gives Virasoro algebra, i.e. a central extension of the

Lie algebra of vector fields on the circle [9] :
Vir={e,z:[ene]] =(j —i)eir; + (1 +j=0)G* —1i)z,
[ei’ Z] = 07 ls] € Z}

Indecomposable modules, outer derivations and gener-
ators of nilpotent algebras can be described in terms of
first cohomologies. Second cohomologies are responsible
for (non) split extensions and deformations [ 10]. Nonsplit
extensions of Cartan Type Lie algebras called as Virasoro
type Lie algebras. We interested in the following problem:

For given Lie algebra L find irreducible modules M such
that H*(L, M) # 0 and find basic cocycles

As mentioned in [1] this problem for k = 2 is orig-
inated from Cartan. We solve it for Cartan Type Lie
algebras and their irreducible tensor modules in cases
k=1,2.

Denote by (L) the number of irreducible modules
M such that H*(L, M) # 0. For any Lie algebra L of
prime characteristic p the following inequality is true:
0<ki(L)< oo, 0<k<dimL [3,4]. For example,
K,(sl,) = 1, p > 3. Some infinite-dimensional analoges of
this result are also true for Lie algebras of Cartan type
over complex numbers. From our results it follows that in
the class of tensor modules,

K,(W,)=9—6(n=2,3)—4o6(n=1),
K2(Sy—1) =6 —0(m=23),n>2,
Ky(H,)=T7—20(n=1),

2 (Kys1) =9,

kK1(W,) = Kk1(Ky+1) =3,

K1(Su—1) = K1 (Hy) =1

For example, W, has five irreducible tensor modules with
nonsplit extensions. One of them is trivial module and the
corresponding extension is Virasoro algebra.

In our paper we consider two-sided Cartan type Lie
algebras L (Lie algebras of vector fields in Laurent power
series) and one-sided Cartan type Lie algebras L™ (Lie
algebras of vector fields in formal power series). In Sect. 2
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we give a constructive description of tensor modules for
Cartan type Lie algebras. In Sect. 4 we describe all irredu-
cible Lg-modules M, such that H*(Z§, M) # 0. As it
turns out calculation of H?*(%4, M,), more precisely
H?*(Z,, C), is equivalent to calculation of the following
things:

i) a space of defining relations of maximal graded nil-
potent subalgebra £7;
ii) invariant bilinear forms L{ AL{ - M, and some-
times L, AL > Mo, k +q =3, 4;
iii) all nonsplit extensions of L by irreducible (L, U)-
modules.

Recall that Lg is isomorphic to one of the classical Lie
algebras of types A,, C, or their split central extensions.
We prove that all irreducible Lg-modules M, with the
property H?(L, U®M,) # 0 can be realised as subspaces
of tensor modules of type (2,4) (1, 3),(0,2), (0, 1) (1,2), very
like to the spaces of tensors of connection, curvature and
etc. Here (s, k) denotes type of tensor, s is the number of
contravariant components and k is the number of
covariant components. For example, H*(Z(S)g, M) # 0
exactly in the following five cases:

MO; <Rab : Rab = - Rba> (07 2)7

Mo=<{Rpeq: Ryea = Ripas Roea + Riap + Rigpe = 0> (1, 3),

M,c <Rcdef Rcdef = — Rgl}cd Rdcef R‘cltli)fe = R?sef>
(2, 4),
Mo S{Rer: RiGes = Riley = Ricas = Ridpe = — Rlies>
(2,4,
M,c <Rcdef Rcdef Refcd Rdcef Rggfe
Rliery 2,4

(here a, b, c,d,e,f=0,1,2, ..., n)

We would like to draw the attention to some corolla-
ries of our result. The one-sided hamiltonian algebra
H,  has only one nontrivial cocycle in the adjoint module,
this cocycle is called the Moyal cocycle [17]. Correspond-
ing local deformation can be prolongated to a global
deformation and obtained deformation of Poisson
bracket, called the Moyal bracket, is important in quan-
tum mechanics. We prove that two-sided algebra [H,,, H, ]
has, in addition to the Moyal cocycle, 2n* + n more 2-
cocycles in adjoint module. It is also interesting to note
that Lie algebra of divergenceless vector fields on the
3-dimensional sphere S5 has exactly one nontrivial 2-
cocycle in the adjoint module:

lp(uaiv Uaj) = gabcaaaj(u) abé\i(v) aca

where ¢, 1s Levi-Chivita tensor. It seems to be that
prolongation question of local deformations to global
deformations is not so simple. In hamiltonian case H,, for
example, some of local deformations have obstructions.
The calculation of H*(Zg, M,) may be useful for cal-
culation of cohomologies or homologies of the nilpotent

subalgebra £ 7 with coefficients in trivial module:

@MO®Hk($3—7 L(‘;a MO) ;Hk(gra (E)
M,

(here M, runs through all the irreducible Lg-modules).
Note that for Cartan Type Lie algebras L the cohomolo-
gies H*(Z{, €) was completely calculated only in case of
L =W, [11]. At least eight proofs of this result are
known, but it still remains one of the difficult results in
cohomology theory of infinite-dimensional Lie algebras
[8].

Another direction arising from our approach concerns
defining relations of simple Lie algebras. As we mentioned
above our problem is “almost” equivalent to the problem
of calculating the second homologies of nilpotent subal-
gebra % . The space H*(#1, C) can be interpreted as
a space of defining relations of .#; . Defining relations of
classical Lie algebras were found by Serre [22]. Nonclassi-
cal simple Lie algebras (Cartan Type Lic algebras) have
big nilpotent subalgebras ¥ and H*(Z{, €) constitutes
the main part of their defining relations. Calculations of
H,(Z{,C) made jointly with Kerimbaev will be pub-
lished elsewhere. Recall that 1-homologies of #{ corres-
pond to generators of .#{. In characteristic zero gener-
ators were found by Gelfand and its collaborators [8], in
characteristic p > 0 it was calculated by Kostrikin and
Shafarevich [13].

Many mathematicians and physicists were interested
in generalizations of Virasoro algebras. Central extensions
of two-sided Cartan type Lie algebras were described in
[2]. In this paper proved that in the class of two-sided
Cartan type Lie algebras only the following algebras have
nonsplit central extensions: W (Virasoro algebra), S, and
H,. From a physical viewpoint the problem of describing
nonsplit extensions of Lie algebras of vector fields by
modules of tensor fields was interested also in [15, 14, 16].
For L = W, Larsson found two modules (differential 1-
forms and 2-forms) having nontrivial 2-cocycles. For
L =W, W, and H{, second cohomolgies in all irredu-
cible tensor modules was calculated in [4,5] (actually in
this paper the case of characteristic p > 0 was considered,
but the results contain the charactersitic 0 case as p — o0 ).
Nonsplit extensions of L = W independently described
also in [21]. Some cocycles for L = W, and L = H, was
also found in [20, 12, 18]

2 Preliminaries

All vector spaces are considered over C. For a set of
vectors {u, v, ... } we will denote by {u, v, ... ) its linear
span. If o7 is some statement, we will denote by §(.<7) its
Kroneker symbol: (/) = 1 if o7 is true, and = 0 if o7 is
false. Usually d(x = y) is denoted by I, ,.

Let T,, or more precisely I'; be a set of n-tuples
{o=(...,0 ...,y €Z,iel}, where I is a set of indices
and n = |I| is the number of its elements. Let I,/ be the
subset consisting of all «, such that o; > 0. Let C; be the
algebra of Laurent power series C[xi:iel]=
(X" =TT xfi:o € I'r). Instead of C; we shall write C;; or
simply U (I will be clear from the context). The Lie algebra



of General Type W, is defined as the algebra of deriva-
tions of U with the usual commutator:

[ud, v0;] = ud;(v)0; — v0;(u) 0;, I = {1, ..., n}.
Let

ws = dxoAndxy A - Adx,, [ ={0,1, ..., n}, (volume form)

og= Y dx_ndx,]={+1, ..., £ n}, (hamiltonian fo-
i=1
rm)

wg =dxo+ Y dx_;ndx;, I ={0, £1, ..., £n},
i=1

(contact form)

The Lie algebras of Special Type S,_;, Hamiltonian
Type H, and Contact Type K,.; are defined as the
subalgebras of W; saving the corresponding differential
forms:

Sn = {DG WnJrl: D(wH) = 019
Hn = {D € WZn: D((,UH) = O},
K.i1= {D € Wan+1: D(wg) = wK},

The Hamiltonian algebra can be defined as the vector
space U with an even number variables with the Poisson
bracket

{u, v} = isgnia_i(u) 0;(v).

The Contact algebra is defined on vector space U with
odd number varuables as follows:

[1,0] = (1) Aw) — 30(0) AGu) + Ysgn i 0—) 1),

where, A(u) = (2 — Y, ,x:0;) (). In general these algebras
are not simple. To obtain simple ones we take second
commutators and factorize by center (in hamiltonian
case). Lower indices denote dimensions of standard tori.
We endow U and its derivation algebras with gradings:

U= @Uks L= @Lb UkUqEUk+qs [Lka Lq:lng+q
k k

Up = {x* |of = > o =k},

iel
L=W, L,={x"0;|o| =k +1,},
L=H, L, = {xo|u| =k+2},

i=

L=K,,+1,Lk={x“: 2000 + Za,-zk—i-Z}
i=1

The filtrations corresponding to these gradins are:

LZUyk, Yy = @Ljs Li2%i1,keZ
k

jzk

Here gradations and filtrations run through all positive as
well as neagtive integers. This is why we call these algebras
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two-sided Cartan type Lie algebras. They have subalgeb-
ras that we call one-sided Cartan Type Lie algebras,
because their gradations and filtrations run integers from
— 2 or — 1 only to positive parts. Namely, for the algebra
U*' = C[[x;:i e I]] we introduce one-sided Cartan type
Lie algebras as follows:

W, =DerU", S5 =W,NS.,
H, K, are subalgebras of H,, K, spanned on U™

Then for L = W,, S,, H,, K, + algebra L™ has grada-
tion:

L"= @ L, L =L*\L
)

and filtration

L =@Lf, L=25,c20, 2047 -

jzk

The subalgebra Lg is isomorphic to gl,, s, Sp,, sp, ®C
forL=W,S,, H,, K, respectively.

Let J(L) be a subalgebra L™, if L=W,,S,_; and
LY+ L, if L=H,K,.,.

3 Tensor modules

Let Q be a Lie algebra of derivations of an associative
commutative algebra V. We say that M is a (Q, V)-module
if M has structures of module over the Lie algebra Q and
over the associative algebra V/, such that

D(vm) = D(v)m + vD(m)

for any DeQ,veV and meM. For L=W,,S,, H,, K,
Q=L L*, V=U,U" denote by J(V) the category of
(Q, V)-modules. Let 3, be the category of Lg-modules.
Make any M, e 3, a module over &g by £ M, =0.
Define a Functor

To=>3(V), Mo—VRM,

by the rule
D(w®m) = D(v) m + Y vE,(D) ®@a(m),

u(v®@m) = uw@m,Vu,ve U,VDe L,Vme M,,

where E,:Q — V' are the linear maps invariant under
L{ + L3 constructed in [6] for any basic element a € L3 .
We call the module V® M, the tensor Q-module with base
M. So, actions of L and its subalgebra L* on tensor
modules are given by the formulas

L =W, (ud;) v@m) = udi(v)@m + Y 0,(u)®x,0;(m),

L =S5,,(0:(u)0; — 0j(u)0;)(v®m)
= (0i(w) 0;(v) — 0;(u) 0i(v)) @m
+ Z Uasai(u)®xsa]’(m) - Uasaj(u)®xsai(m)>
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L=H,u@w®m)={u,v}®@m + (1/2) Zué’iaj(v)@xixj(m),

L=K,.,u(v®m)
= ([u, v] — 200 (W)v)@m + v0o ()@ x0(m)
+(1/2) Z v(0; + sgnix _;00)(0; + sgnjx_;0o)(u)

770
®x;x;(m)

Notice that (L*, U")-modules can be described in the
language of induced or coinduced modules. For example,
Ut@My=Ind(ZLo, My). But an (L, U)-module in general
is not isomorphic either to an induced or a coinduced
module.

For Cartan Type Lie algebra of toroidal dimension
n(L, U)-modul M = U®M, has weight decomposition
M =®,.r, M, such that for any weight space
M, = {xX*®M,} we have dimM, = dimM . This property
was used in [19] for constructing a W,-module with
weight subspaces of dimension n (take M, as A'), n* (take
M, as the adjoint module of gl,), n>, etc.

4 Cohomologies and interpretations

For a Lie algebra Q and a Q-module M denote by
C¥(Q, M) the space of skewsymmetric polylinear maps
with k arguments in Q and coefficients in M, if k > 0,
C(Q,M)=M, and C*(Q,M)=0, if k<0. Let o
Q — EndC*(Q, M) be the standard representation of Q:

oD (Dy, ...,Dx) = DW(Dy, ..., Dy))
k
+ Z(_l)iw([D7Di]’Dla ---9ﬁi, ~~-5Dk)
i=1

and let 1: C*(Q, M) — C*~(Q, M) be the inner product:
D)y (Dy, ..., Dy—y) =4(D, Dy, ..., Dy)

(here D means that the element D is omitted). For a subal-
gebra R of Q denote by C¥(Q, R, M) the subspace of
C*(0, M) consisting of the maps ¥ such that 1(D)y = 0
and D)y =0 for any DeR. Let C*Q,M)=
@C*(Q, M). In the cochain complex C*(Q, M) the
coboundary operator

d:CYQ, M) » C*"1(Q, M)
is defined by

dlﬂ(Dl, "'9Dk+1) :zw([Di:Dj]aDla "'9ﬁi9 ,Dj, ,Dk+1

i<j N A
+ ,-;(_ DDy, ..., Dy, ..., Dy )

Let

Z*(Q, M) = Kerd (space of cycles),

B*(Q, M) = Imd (space of coboundaries),

H*(Q, M) = Z*(Q, M)/B*(Q, M) (space of cohomologies).

For example,

H°(Q, M) = M" = {me M:D(m) = 0,VD € Q}
(submodule of invariants),

H'(0,C) = Q/[0Q, O] (subspace of generators),

H'(Q, Q) (space of derivations),

H?*(L, L) is the space of local deformations (see [10]).

For Cartan Type Lie algebra L and its nilpotent subal-
gebra £ the space H*(Z{, C) can be interpretered as
a space of defining relations of #{ (see [8]). In next
section we give an interpretation of H(L,U),
H'(L*,U") as a spaces of deformations of representa-
tions.

For subalgebra R of Q relative cohomologies are de-
fined as the cohomologies of subcomplex C*(Q, R, M) =
DeCH(Q, R, M).

Let L be a graded Lie algebra of Cartan Type:
L= @, and L5 = PrsoLi, Mo-Z¢-module such
that Z;{ M, = 0. The cochain complex C*(Z4, M,) also
has a gradation:

C*(Z5. Mo) = D CHZg, M),

r>0

C;k(g(;r’MO) = @C’:(ggaMO)a
k
Cf(gar’ MO) = {weck(ggaMO):lp(Dl, )Dk) = 07

Di € Lki’ Z ki # k}

Denote by H¥*(#¢ , M) the cohomologies of the cochain
subcomplex C*(ZL¢, My).

For a Cartan Type Lie algebra L and Q = L, L™,
V =U,U" the following map induces isomorphism of
cochain complexes:

E:CHZg, Mo) — CHQ, J(L), VR®M,),

EYy(Dy, ..., D) = Z Eal(Dl)”'Eak(Dk)®w(ala s Q)

here ay, ..., a; runs through the basic vectors of Z¢.

5 Deformations of (Q, V')-modules

Let M be an (Q, V)-module with action Q x M — M,
(D,m)—>D(m). Let M be exact as a V-module:
u(m) = 0,Vme M=-u = 0. Define on M, = M®C{A} fol-
lowing Gerstenhaber a new structure of (Q, V) -module
with action of Q given by a power series

D, (m) = D(m) + if{(D)m + 2*f,(D)m + ---

We do not change the action of V. We shall say that M is
a deformation of the (Q, V')-module M and denote it by
f=(f1,f> ... ), if these actions really give (Q, V) -module



structures. Deformations f and g are equivalent if the
following diagramm is commutative

M, 5 M,
lo Lo
M, 5 M,
under with

@:M;»-’Ml, m—m + )\,¢1(m) + )»2¢2(m) + tt,

where ¢4, ¢,, ... are linear operators on M. The condi-
tion that D — D, is a representation of a Lie algebra is
equivalent to

fieZ (0, V), Vk > 0.
In particular,

freZYQ, V)
and for equivalent deformations f.g,
fi —g1=dpeBY(Q, V).

Moreover any cocycle fe Z'(Q, V) as a local deformation
f1 = fcan be prolongated to global deformation fin a triv-
ial way: f=(f1,0, ...) is a deformation of M. So, we give
an interpretation of the first space of cohomology
H'(Q, V) as a space of deformations of (Q, V)-modules.

It is easy to check that for a Cartan Type Lie algebra
Q (one-sided or two-sided does not matter) and a two-
sided module U the 1-cochains Sq; € C*(Q, U), ieI(L)
defined by

Sq:(D) = D(Inx;) : D—x; 'D(x;),

are cocycles. The same is true for the following cochains in
clQ. V)

Div:ud;+ 0;(u),

forQ =W, W}, V=UU",

A:u»—><2 — in(?i)(u), Dy: X*—3,— _,

for L=H, H ,V=UU", (here 0 =(1, ...
0o :ur> 0 (u),
forL=K,,;.

Theorem 5.1. Let Q =L, L™, where L=W,, S, ., H,,
K,i1, and V.=U,U", where U = C[[xi:iel =IL)]]
Then

HY(L,U)~HYL*,U)~H'(J(L),U)® H'(Z,, ©),
HY(L",U")=H'(J(L), U")® Lo /[Lq. Lo ],
H'(J(L), V) =H (Q(V)) =C"V,
if L+#H,, and
H'(J(L), V)=H (QV) @ Ay=C*",
if L =H, where
HY(Q(U))=<d(Inx;):i e I(L)»
~{Sq;:ie (L)), H'(QU"*) =0,

> 1) € FZn)
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H1($3,6)2<Dw>;(]:, lf L=Wna g<D9>;q:’ lf

L=H, and =2{0o>=C,if L=K,+.

Let A*={dx; A ... A dx;:iy, ..., i €1y be the Lg-mod-
ule of k-differential forms, A* =@A*  and
Q"(V) = VOA:, QF = @Q V). Endow Q*(V) with
a coboundary operator:

QL) - QW)
dw®dx;, Adx;) =Y 0;(0)@dx; Adx; A -+

iel

Adx;,.

In this way we obtain the de Rham complex Q*(V) with
coefficients in V. Let, as usual,

Z*(Q(V)) = Kerd (space of closed forms)

B*(Q(V)) = Imd (space of exact forms)

and,

H*(Q(V)) = Z*(Q(V))/B*((V)) (de Rham cohomologies).

Proposition  52. H*(U)=A* = {d(Inx; ) A -+
i, .oy ipe D>, H¥U')=O.

Ad(Inx;):

In particular,
(Sqi:ie I>=HY(QU)), Sq;—d(Inx;)>.

Recall that any irreducible Lg-module M, is uniquely
determined by its highest weight 7, and conformal weight
J.(if L is simple, then 4 = 0). Lg has 1-dimensional center
in the following cases:

L=W, Ly =<{x0;:i,j=1, ...,n)=gl,

(x;0/),(m) = x;0;(m) + (1 — 2)0(i = j)m,me M,

and

L=K,.1,

Lo =<xxjiij= £ 1, ..., £n) @<{xo»
=sp @ C,

u;(m) = u(m) + (4 — 2)0o(u)ym, u e Ly, me M,).

We will write M = R(n) or M = R(n, A). Denote by
n,1 <i<dimT, the fundamental weights of Lg. Any
highest weight can be represented as a linear combination
of fundamental weights with nonnegative integer coeffi-
cients © =) ;lim;. It is well known that any irreducible
module M, = R(rn) is isomorphic to a submodule (or
factor-module) of some module M, obtained from tensor
(®), exterior (A) and symmetric (o) products of funda-
mental representations R(r;):

My = ®S"(AY).

For tensors a and b the following notations are used:
anb=a®b—bRa,achb=a®b +bRa. Let A=
dx; A -+~ ndx; ) be the k-th exterier power and
Sk = {dx;o---odx;y be the k-th symmetric power, here
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Table1. H%(%5, Mo), L =W,

Table 2. Hz(,(f(‘)‘-,M()),L:Sn71,n>2

highest weight

dimMo, [ = 1,r =2, if

cocycles y: Li A LT — Mo,

of My and M, otherwise is not mentioned Y (o, v0;),0 <k <gq,
k+q=r
ny, =1, nr=1 Y 0:i(u) do;(v) — ;(v) doi(u)
Mo=A!
2y + M1, n+2) <;> W 0i(u) vd; — 0;(v) uds
A=2,n>1,
Mo=S*QL*,
M A=1, (Z) W doiu) A do;(v);
n>1, Mo=A? 1=2 W do(u) A déi(v)
Ty + T2 + -1, (n+2)n*(n—2)/3 YT =
A=2,n>2 du A do;(v) 0j — dv A ddj(u) 0;
M0§A1®A2®Lt1 =2 lﬁ?’
doi(u) Advdj — do;(v) Adud;
1
34+ T, (n+3) <" ;r ) WY d(0iw) v) 0; — d(@,(0) u) &
A=2,n>1,
Mo=S*QA'®LZ,

27‘(1 + 1y + 27‘[,,71,

A=3,n>2,
Mo=S*®@A2®S*(L*,)

4y + -2,

A=2,n>2,
Mo=S*QA'®A*(LE,)
27 + M- 2,
A=2,n>3,
Mo=S*(A?) @A*(L*E,)
Ty,

A=0,n=2

Smy,

A=2n=2

Tny,

A=3n=2
0,Ai=—-1n=1
0,Ai=—4n=1
0,Ai=—-6,n=1

3 n+1
E(n+4)(n+1)< 4>
n+ 1\ /n+1
()03
n+1/mnm—2\/n+2
=(2)(%)

[=2,r=3
6,r =
8,r=3
1,r=2
1,r=5
1L,r=7

e du A dvoio;

Y s.o(dds(u) A dé,(v)
o(dxs A dx,) ®(0; A 0;)

V=8 do;(u) Adoi(v)
Wi d{6i(w), 0;(v) }

W 3(prL, s} — Tpra A pra

Y = 4 pry A

e; Aes—1

esnest— 1, e3ne—> — 3

heighst weight
of My and M,

dimMy,l=1,r=2

cocycles y: LT ALY — Mo,
its values y(ud;, v0;)

T2, ]\4()2//\2

T+ 7y + T,
Mo=A'®A*QLL,
27'[1 + 1y + 2723,,71,
Mo=S*Q@A*®S*(LE,)

4;77-'1 + T2,
Mo~S*®@A2(L*))

2An2 + Ty—n, 1 >3,
Mo=5%(A?) ®S*(L%,)

n
)
(n+2)n*n—2)
3

3 n+1
5(11+4)(n+1)< 4>
n+4\ /m+1
(204
n+1/m—2\/n+2
()07

Ui doj(u) Adoi(v)

v
du A do;(v)0; — dv A ddj(u) 0;
Vi

du A dvd;0;

i

d(uv) 8[ A ﬁj

Y3 Y s (dos(u) A dy(v))
o (dxs A dx)®(0; A 0;)
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Table3. H(Zg, M)

L weight dimM, r l cocycles
w, 0,A=1 1 0 1 Div: L§ — R(0) =C
n>1 ny,A=1 n 1 1 Div: L{ — R(ny) =(C,){
2
2, + Ty ("; ) 11 PRLE > RQr 4 T ) =S )i
A=2
Wy 0,A=1 1 0 1 eor—1
0,A=0 1 1 1 ei—1
0,,1=—1 1 2 1 er—1
2
Sn71 277.'1 + -1 <n_; > 1 1 pi’11L1+ —’R(27T1 ‘|'7'E,,—1);L1+
n>2
2 2
H, 3m, ( "; > I 1 priL{ —»RGm)=(Cal
n+2 + +
K,+1 3ny,A=2 3 1 1 pri:LY — R(3my)=(C1)3
n,A=0 2n + 1 1 1 0o:L{ — R(my)=(C1n)7
0,A=0 1 0 1 Oo:Lg - C
Table 4. H*(Z§, Mo), L = H, ) ) ) ) N
highest weight dimMo, = 1,r =2, if cocycles : Lif AL - M, and
of My and M, otherwise is not mentioned Yunv),0<k=Z<gqgk+qg=r,
nonwritten components are zero
0, Mo=C, 1 i =u
2, (n—1)@n+1) Yo
MQEAZ, Zi,j — dﬁfi(?,j(u) Adﬁiaj(v)
n>1 + 2d0716‘,(u) /\dﬁf,»(')j(v)

— dc”‘l(?](u) A d(?_iﬁ_j(v)

22 2n —1
2y > 1, # <2> i
Mo=S?(A?) Zi,jzgzl(dﬁiﬁs(u)/\dﬁja_s(v) —
d0i0—(u) Ado;0s(v))°dx; Adxj,
3> 1, @2n +5)(2n -; )(2n— 1)n <Z> 1,
Mo=S*(A?) Yi s, i(d00i(u) A dd0;(v))
°(dxs A dxy)° (dx; A dx;),
2 52 3)(2 1 1
4ry + 1, @n + )(n3+ )@n + )(n—;— ) Vi duado
Mo=S*@A2,
n>1
1, Al 2n,r =3 We: prop(u Av),
Mo~
77rl,n=l,+ 8,r=3 Vi uv,ue L{,ve LS
Mo=(C,);
12\;111,71(0:: 1),+ 3,r=4 & pra(6p + p1) (uAv)
0=(L3)2

iy, ooripe€f{l, ...,n}, if L=W,S,_y and iy, ... i€ H,!, K, coincide, and the natural imbeddings of 1-com-
{+1, ..., +n,if L=H, K,+. ponents

It is easy to see that
L1+(S) = (S;71)1 - LT(W) =W
H3(%3, Lo, Mo) = C*(Li, Mo)"™ L (H) = (H,){ = L{ (K) = (K1)

Since the commutators of 0-components of W,', S,/ ; and  are [Lg,Lg]-module monomorphisms, we can give
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Table5. H*(Zs,Lg, Mo), L = K,
(#d. Ls o) o highest weight of M,
and M,

dimMo, [ =1,r =2, if
otherwise is not mentioned

cocycles Y and its values
Y(unavLuelf,vel/
O<k<gk+qg=r

0,A= —2,
MO;C

T2, A= _27
Mo=A%n>1

2n5, A= —4,
Mo=S*(A%),n>1
3y, 4= —6,
Mo=S3(A%),n> 1

4rty + 7wy, A =0,

Mo=S*(A') ®A%n > 1

211 + 7o,

Mo=S2®@A?,
A= —2,n>1
4y, A =2,
M0§S4
7[1,)V= —2,
Mo=(Cy)1,
n=1
3my, 4 =0,
Mo=(Cy)3
n=1
5711,)»:2,
M();(Cz);
n=1
77[1,)»=O,
Mo=(Cy)7n=1

1 yt =t
(n—1)2n+1) v5 = g%
=2 W& doo(u) A doy(v)
sen+3en-1(3) vE= i
2Cn+5C2n+1)2n—1)n /n X _ ~H

: <2> vE =P
(2n+5)(2n3+3)(2n+ 1)<n—;— 1) YK =gt

Qn +3)2n + 1) <Z> W& 0o (du A dv)

@n+3)C2n+1) (n + 1> Yt d(udo(v) — vdo(u)

3 2

2 Y& = J4(prolongation
=2, see below)

r=3 Yo x3 A Xoxixi,
4r=3 WK1 00 (u) 2o(v)

+3udd(v),ueLi,ve LS

6,r=3 Wy: 3udo(v) + do(u)v
uelL{,vels
8,r=3 Yl = lﬁl

Prolongation  of
v=xoaelLj.

imbeddings
H3(ZL(S)g, Mo)= H3(Z(W) ¢, Mo),

H3(Z(H)g, Mo)= H3(ZLg, Mo).

So, if ¥ is a cocycle from Z3(Z(S)s, M) or Z3(ZL(H)g,
M), then it has a trivial prolongation to Z3(L(W )y, M)
or Z3(Z(K)o, M), correspondingly. Denote it by . This
denotion we will reserve also for cocycles from Z7Z(Z(S)g,
M), ZXH(L(H)g, M,), r > 2, that have prolongations to
cocycles from Z2(L(W)g, M,), Z:(L(K)§, M,). Notice
that S;~H, and sp,=~sl,, but we consider S,_; from
n>2, thus in constructing cocycles for W, we use

cocycles for H;.

6 Main results

Theorem 6.1. Let L=W, S, ,H,K,;;, O=L,L",
(0, V)=(L,U),(L*,U),(L*,U") and M, be irreducible

l//g : l/lg(u A Xoa) = S(Zi.j: +15gn(ij) 8:'8;'(“) 5—:'5—1'(“)),

where wuelLf,

Lg-module, such that 1My = 0. Then for k=0, 1, 2,
k
HYQ, VM) =PH(J(L), V) ®H* (L, M),
s=0

HY%§, Mo)=L§ [[LS, L{1®H (21, ©)@ M)
@ H"ZT, C©@Mg)*,
H*J (L), U)=A*J (L)), H*(J(L), U ") = °*==H1-

H'(Q, U®M,) has a basis consisting of classes of cocycles
0(My=C)Sq;, iel, (L =H,)5(My=C)A, and Ey(1).
In H*(Q, U®M,) one can choose a basis consisting of
classes of cocycles E((2)), Sq;n E(Y(1)), o(L = H,)A A
E(W(1), 6(Mo=C)Sq;AnSq;. Here y(s) denotes the
basic cocycles of H(Zg,M,), s=0,1,2. The space
H*(L",U*®M,) has a basis consisting of classes of
cocycles EW(2), oL =H,)AANEQW()). Nonzero
HYZL3, My), k= 1,2 see Tables 1-5.

In the tables we use some special denotions:
L =W,. {u,v} denote the Poisson bracket in subal-

gebra H, of L, L; is the Ly-submodule of L; generated by



derivations without divergence and L; is its additional
submodule, pr;:L; — L;, pry: L; —» L; are natural projec-
tions;

L= Wl.e,- = xl+151;

L=H,pr; U-U; is natural projection, u=
(-, 0-;A0;)? is the Moyal cocyle, y is the restriction of
u to the subalgebra %5, prolongated trivially to £7, i.e.
ui(Ly, Z1)=0;

Corollary 6.2. Let L=W,, S,_,n>2, H,, K, 1. Then
H*(L,L)=H*L*, L") =0, except the following cases:
L =S8, H,. Moreover,

L= S2> Hz(L+7 L+)
=Cxuo;Avdj—> Y.
{abc}={0,1,2}

=H, 0=L/L", H(Q,Q)=H'(Q,Q)AH'(0,.0)®
wy, HY(L, L)y~ H'(L, U)=<{Sq;, A, Doy, H'(L", L")
HY(L*, U*)=(A, D).

sgn (512) 0a0;(u) 0,0:(v) 0.,

O
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