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Abstract. We show that a space of one variable differential operators of order p admits
non-trivial 2p-commutator and the number 2p here can not be improved.
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Let A be an associative algebra over a field K of characteristic 0. Let f =
f(t,...,t;) be some non-commutative associative polynomial. Say that f =0 is
identity on A if f(ay,...,a,)=0 for any substitutions f; :=a; € A. Let s, be a skew-
symmetric associative non-commutative polynomial

Sp(ty, ..., th) = Z SIgN o to(1) -+ Lo (n)-

oeSym,,

For example,
so(t1, ) =t — bty =11, 7]

is a Lie commutator.

Suppose that an associative commutative algebra U has k commuting deriva-
tions Ji,...0k. A linear span of linear operators of a form ud;, ...&-p, where 1<
i1,....ip <k, is denoted D,Ep)(U). Let Dk(U):UpzoDIEP)(U) be space of differen-
tial operators on U generated by derivations 0y, ..., 0. In case of k=1 we reduce
notation J; to 0.

It is known that Dy (U) can be endowed by a structure of associative algebra. A
multiplication of the algebra Dy (U) is given as a composition of differential oper-

ators. For example, if k=1, then

P
udP vd = Z (f)u@‘v(v)a”ﬂ_s.
s=0
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Certainly this construction can be easily generalized for algebras with several
derivations.

We can consider D,Ep )(U) as a space of differential operators of order p. Well
known, that any differential operator of first order is a derivation and a space of
derivations Der(U ):D,El)(U ) forms Lie algebra under commutator,

uo;, vaj S Dlgl)(U) = 57(uo;, Uaj) =uo; -vaj — Uaj -ud;
= 57 (uo;, Uaj) =u(9,-(v)8j — Uaj(u)ai € Dlgl)(U).

Main example of the algebra of differential operators appears in the case U =
K[x1,...,x;] and 0; =0/0x;, i =1,...,k, are partial differential operators. Recall

that action of d; on a monom x% =x{"---x*, where a = (a,..., ) € Z’é, is
defined by

Oix% =a;x“™.
Here Zy is a set of non-negative integers and ¢; =(0,...,0,1,0,...,0) GZS (all

components of € except i-th are 0).

Denote by A; an algebra of differential operators on polynomials algebra
K[x1,...,x;] generated by k commuting derivations 0, ..., dr. The algebra Ay is
called k-th Weyl algebra. Let A,(cp )= (ud”||a| = p) be subspace of Ay consisting dif-
ferential operators of p-th order.

Let us consider A,((‘" ) as N -ary algebra under N-ary multiplication sy,

syn(Xq,...,XN)= Z sigho Xo(1) -+ Xo(n)-

oeSymy

In general this notion is not correct. Might happen that sy is not well-defined
(p)

on A
k ’

SN(X1, . X)) AP
for some Xi,..., Xn eA,(C"). We say that A,(Cp) admits N-commutator sy, if
sN(X1,..., Xy) e AL

for any X1,...,XN€A,({p).

In [3] it was proved that the space of differential operators of first order Aﬁ,l) in
addition to Lie commutator s, admits (n%+2n —2)-commutator and that sy =0 is
identity if N >n?+2n. Let Mat, be an algebra of n x n matrices. Amitzur—Levitzky
theorem states that Mat, satisfies the identity sy, =0 and it is a minimal identity
[1]. Note that Weyl algebra has no polynomial identity except associativity. So, to
construct non-trivial identities we have to consider smaller subspaces of Weyl alge-
bra.

The aim of our paper is to establish that the space of one variable differen-
tial operators of order p admits 2p-commutator. The number 2p here can not
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be improved: if N >2p, then sy =0 is identity on Agp); if N<2p, then sy is
not well-defined on AY’ ); if N=2p, then sy is well-defined on Aﬁp ) and non-
trivial. Obtained 2p-ary algebra A(lp ) under multiplication s, is simple and left-
commutative. In particular, the 2p-algebra (Agp ),szp) is homotopical 2p-Lie. To
formulate exact result we have to introduce some definitions.

Let us given an n-ary algebra (A, ) with n-ary skew-symmetric multiplication
Y:A"A— A. Say that A has (2n —2, 1)-type identity (in [4] it is called (n — 1)-left
commutative) if it satisfies the identity

z signo Y (ao(1ys - - - do(n—1), ¥ (Ao @) - - - » Ao (2n-2)» A20—-1)) =0

sesn—21)

Say that (A, w) satisfies (1,2n —2)-type identity, if

Z signo ¥ (ai, gy, - - - Ao (n—1)s ¥ Ao (n)s - - - » dg2n—1))) =0,

ses.2n-2)

for any ay,...,az,—1 € A. Here

§e=LD — (5 €8, 1, lo@n—1)=2n—1},
so2n=b _ 5 ¢ Sp—1nlo(1)=1},

where
Sicin={o€Sy_1lo()<---o(n—1),0(n) <---<o(2n—1)}

is a set of shuffle (n — 1, n)-permutations on the set {1, 2,...,2n—1}. Call n-algebra
(A, ¥) left-commutative if it satisfies the (2n — 2, 1)-type identity. Similarly, it is
called right-commutative if it has the (1,2n — 2)-type identity. In fact, these two
notions are equivalent (Lemma 22).

Say that (A, ) is homotopical n-Lie [5] if it satisfies the following identity

Z signa w(aa(l), e ag(n_l), Iﬂ(ag(n), . aa(zn_l))) =0.

Uesnfl,n

For k-ary algebra (A, v) with k-multiplication v : A¥A — A and for a subspace
I C A say that [ is ideal of A, if ¥(ay,...,ax—1,b)€l, for any ay,...,ax_1 €A, be
I. Say that A is simple, if it has no ideal except 0 and A.

In our paper, we prove the following result.

THEOREM 1. Let A1 = D(K|[x]) be one variable Weyl algebra over a field K of
characteristic 0. Then

o 52,41=0 is a polynomial identity on Agp).

e Any polynomial identity of degree no more than 2p follows from the associativity
one

o sy is not well-defined on Aip) if N<2p
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o 53, is well-defined and non-trivial operation on AY’ )

o [For any uy,...,uxp € K[x], the following formula holds
O(uy) O(up) s O(u2p)
SZp(ulap"" ’MZpap)z)\p . . . o7,

82P—'1(u1> azp—i(uz) azp—lkuzp)

where A, is a positive integer
e the 2p-algebra (Agp ), s2p) is simple and left-commutative.

COROLLARY 2. If k>2p, then s =0 is a polynomial identity on Agp).
COROLLARY 3. The 2p-algebra (Aip), $2p) Is right-commutative

Proof. It follows from Lemma 22.
COROLLARY 4. The 2p-algebra (Aip), $2p) is homotopical 2p-Lie.

Proof. By Corollary 2.2 of [4] the algebra (Aip ), s2p) i1s homotopical n-Lie.

COROLLARY 5. Any polynomial identity of Weyl algebra A, follows from the
associativity identity.

This result follows also from results of [7].

Proof. Suppose that A, has some polynomial identity g =0 that does not follow
from associativity identity. We can assume that g is multi-linear. Suppose that it
has degree degg =d. Then g =0 induces a polynomial identity for any subspace
of A,. In particular, g=0 is identity on Agp ). Take p such that 2p >d. We obtain
contradiction with the minimality of identity s, =0 for Agp ),

COROLLARY 6. Let U be an associative commutative algebra with a derivation 0.
Then s, is a 2p-commutator of DWP)(U) and sy =0 is identity on DP)(U) for any
N>2p.

Remark 1. In [9], identities of Lie algebras of vector fields are considered. In [6,8],
growth of Lie algebras of vector fields on the line generated by two vector fields
is studied. In other words, they consider Lie algebras of differential operators of
order 1. In our paper we consider one variable differential operators of order p >
1. They are not close under composition. They are not close under Lie commuta-
tor. They do not form Lie algebra and they are not associative algebras. We study
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not only identities, but also their pre-identities. We show that pre-identities gener-
ate non-trivial N-commutators.

Remark 2. One can ask about N-commutators for the case n > 1. It seems that
situation in general case is more complicated. Amitsur—Levitzki theorem states that
$2, =0 is an identity for the matrix algebra Mat,. Let us formulate this theorem
in terms of differential operators.

We consider two kinds of multiplications on differential operators. Let W, =
D,gl)(U ) be a space of differential operators of first order. The first kind multipli-
cation is defined on W, by the rule

ad; ob0; =b0;(a)0;.
The algebra (W,, o) is right-symmetric,
Xo(YoZ)—(XoY)oZ=Xo(ZoY)—(Xo0Z)oY, vVX,Y,ZeW,.

It has subalgebra generated by differential operators of a form x;0;, where i, j =
I,...,n. As a subalgebra of right-symmetric algebra it is certainly right-symmetric,
but in this case the right-symmetric identity is not minimal. The algebra W, o=
(x;0j|1 <i, j <n) is not only right-symmetric, but also associative,

Xo(YoZ)—(XoY)oZ=0, VX,Y,ZeL,.

The algebra W, o is isomorphic to the associative matrix algebra Mat,. Amitsur—
Levitzki found identity for the subalgebra W, o of right-symmetric algebra W,. So,
we see that Amitsur—Levitzki theorem is in fact a result about identities of right-
symmetric algebras. Generalization of identities of W, o for whole right-symmetric
algebra W, was studied in [2].

The second kind multiplication is a composition of differential operators. It is
an associative multiplication. But under composition W, and W, o are not close.
For example, composition of operators x0; - x10; :x%@% +x10p is not an operator
of first order. Appears natural problem about identities of the space L, , generated
by operators of a form x28P, where o, B€Z!, and |a|=|B8|=p. As a vector space
L, 1=W,0. One checks that sy, =0 is identity for the subspace L, 1, if n=1,2, 3.
For n =4 this statement is wrong. One checks that sg =0 is not identity and that
s10=0 is identity for L4 ;. Moreover, s2,_1, as (2n — 1)-ary operation on differen-
tial operators are not well-defined operations for L, 1, if n <4. It seems that it is
a common situation: if n> 1, the space L, , has non-trivial N-commutator if and
only if N=2 and p=1.

Proof of Theorem 1 is based on super-Lagrangians calculus. We do it in next
section. The key observation here is the following fact: If X is a base element
of super-Lagrangians algebra, then O(X) is a linear combination of base eclements
with non-negative integer coefficients. This result allows us to construct a non-
trivial part of s3,_1(X1,..., X2,_1) of order more than p. This result allows also
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to prove that s5,(X1, ..., Xp,) is a non-trivial differential operator of order p for
some differential operators Xi,..., X5, of order p.

1. Super-Lagrangians Algebra

Let Zy be set of non-negative integers, E set of sequences with non-negative inte-
ger components, and

Er={a=(a1,a2,...,)|0<a; <oy <--- <oy, a; € Zp},
Ero={a e Eg|la; =0},

k
Ex()={acElle|=) ar=I},
i=1

k
Ep o) = [a € Exollal =Zak=l] :
i=1

We endow Ej by lexicographic order, « < if oy =81,...,0;_1=8i_1, but o; <p;.
This order is prolonged to order on E by a <p if a € Ex, B€ E;, k<.

Let us consider Grassman algebra U/ generated by formal symbols & (a), where
i € Zyg. We suppose that the generator a is odd and the derivation 9 is even. So,
elements & (a) are odd for any i € Z.

For o = (a1, an,...,0r) € E; set

a®* =" (ay) - - - " (ax).
The algebra U is super-commutative and associative,
a%al = (—D)MaPa.
a®@Pa?) = (@%a?)a’,
for any « € Ex, B € E;, y € E;. In particular, a®a? =0, if « and B have common
components. For example,
a?39,03 —g  (1.23.5,04) _ _,0.1.2345)
Let £ be an algebra of super-differential operators on U under composition.

Then operators of a form a®d, where a € E, i € Zy, collect a base of £. Compo-
sition of operators is defined as usual

w00 =3 (’lf)uaf@)wf,
i=0

where elements ud (v) el are calculated in terms of super-multiplication in super-
algebra U. For example, if X=a®*93 and ¥ =a*13)8*, then



2p-COMMUTATOR ON DIFFERENTIAL OPERATORS OF ORDER p

a1y = q023) 4 4014

@19y =001 Y)) = 9(a 02D 4 4019
_ (123 4 40.24) 1 024) ¢ 015 _ (123) 4 5,024) 4 ,0.15)

and
XY =a@*9401355 4 242499010 4 C49 P (4 01.9) 53
—aqO1.2349)95 L 9,245,023 4 ,0.1.4)) op
+a®49 (@123 424024 4 ;0,15 53
=q(012345 55
since

4249 ,0.23)_ 24,5 0,14 _ 24,5 ,(1.23) _ ;245,024 _ 245,015 _

Let X:Zﬁzk X;eL, where X; = ,cp )\a,ia“)ai, k<i<l and X; #0. Take B e
E such that g #0 and Ay =0 if o > . So, X has highest term Aﬁ,kxﬁal‘. Call
it leader of X and denote leader(X). For example,

X =2a019P 4500295 — 340295 s leader (X) = —3a O3 P

Denote by Uy a linear span of base elements a“, where « € Ej. Similarly define
linear spaces Uy, o Ux(n) and U o(n) as linear span of base elements a*, where cor-
respondingly « € Ex o, o € Ex(n), and « € Ey o(n)

Let U,j C Uy and U,j (n) C Ur(n) are subsets generated by linear combinations of
e* with non-negative integer coefficients,

U =1D raa®ha€Zoy.

acky
Ut = Z ra@®|hg € Zo
a€Ex(n)
Note that U,j , Uk+ (n) are semigroups under addition,
0eU, 0eUf (),
and

u,veU,j:Mt—i—veU,j',
u,veU,j'(n)=>u+veU,j'(n).

Let

Li=(a%d|a€Ey, iclp),
Li(n)=(a%d|i+|a|=n,a € Ex, i € ZLg).

Denote by £ZP) a space of differential operators of order no less than p.
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PROPOSITION 7. For any p >0 the subspace LZ=P) generates left-ideal on the
algebra L,

LLP) C L

Algebras U and L are graded,
Ur(m)Ui(m) S Ug1(n+m),
Li(n)Li(m) S Lkt (n+m),

Uir(n)Li(m) C Ly (n+m),
Li(m)Uj(m) C Ly (n+m),

for any k,l,n,meZy.
Proof. Evident.

LEMMA 8. Let p>0. If u € Ux(n), then ad”(u) € Ugt1.0(n+ p). Moreover, if u €
Ui (n), then ad”(u) e U, ((n+ p).

Proof. Our Lemma is an easy consequence of the following statements:
ucUg(n)=0m)eU(n+1),
ueU (n)=0w)eU;r (n+1).
To prove these statements we use induction on p.

For p=0 our statement is trivial. Let p=1. If u=a*=0""(a) --- 3 (a), then by
Leibniz rule d(u) is a sum of monoms of a form

up =) -1 () (@) (a) - - - O (a), 1<i<k.

If @; 1 =«; + 1, then by super-commutativity condition u; =0. If o; 1| >«; 4+ 1, then
u; is a base monom. Therefore, if o € Ex(n), then 9(a®) is a linear combination of
base monoms a?, where g € Ey(n+ 1) with coefficients that are equal to 0 or 1.
Hence

ucUy(n)=0m) eU(n+1),
ueU (n)=0wu)eU;r (n+1).

So, base of induction is valid.
Suppose that

ueUp(n) ="' (w) eUr(n+p—1).
Then as we established above

9P (u) =P (u)) € Ur(n+ p)
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By similar reasons
ueU; (n)= " "w)eU (n+p—1)= 8" @) =3@" ' (w) e U (n+ p).

LEMMA 9. For any k € Zg the k-th power (ad”)* € L is a linear combination with
non-negative integer coefficients of operators of a form a®d, where a € Ey, |a|+i=
pk and i > p.

Proof. By grading property of & and £ (Proposition 7) it is clear that (ad”)*
is a linear combination of super-differential operators of a form a*d’, where « €
Ey(pk—i) and i > p. By Lemma 8§ coefficients are non-negative integers.

LEMMA 10. If N >2p, then (ad”)N =0 and
(aap)2p — )Lpa((),l,2...,2p—l)ap’

Sfor some non-negative integer Ap.

Proof. If « € Ey, and N=2p+1, then

N-1
la| > Zi:N(N—l)/2=(2p+1)P=PN-
i=0

Therefore, by Lemma 9 (a9d)??*! =0. So, (@d”)N =0, if N >2p.
If N=2p and a € Ey then by the same reasons,
le| = p2p—1),
and
(@d”)N =leader((@d”)V) =1,a 0120~ Dgp

for some A, € Zy.
To prove Theorem 1 we have to establish that 1, > 0. It will be done in next
section.

2. Positivity of A,
LEMMA 11. Let §(k) be maximal element in Eyi1 0(pk). Then

5(k) = O,p—Lip—I+1,....p—1,p+1,....p+l—1, p+1), if k=2,
1O, p=Lp=-I+1,...,p=1,p,p+1,....p+l—1,p+D, ifk=20+1.
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Proof. Note first of all that §(k) € Ex41,0(pk). Indeed,

2pl, if k=2lis even,

|8(k)|=[p(21—|—1), if k=2I+1is odd ~ 0®I=Pk.

Suppose that g >§(k) for some B=(B1,..., Bit1) € Ex+1,0(pk). Then
Br=p—I,

where [ = |n/2].

For 1 <i <k let us call B;11 —B; as i-rise of B and denote r;(B8). If r;(8) >3 for
some 1 <i <k, then we can find y € Ex4 o(pk) such that g <y. Take for example,
yi=pj, if j#i,i+1 and y;=p;+1, y;11=PBit+1 — 1. Therefore,

ri(B) =2, l<i<k.

If r;(B) =2 for some i then r;(8)=1 for any j#i, 1< j<k. Let us prove it
by contradiction. Suppose that r;(8)=2 and r;(8)=2 for i # j, 1 <i, j <k. Then
there exists u € Ex41,0(pk), such that 8 <p. Take for example, us =gy, if s #1, j,
and p; =g +1, wjr1=B+1 -1

Let k=21+1. If ry41(B)>1, for some 0<s <k—1. then oy > p—1I[+s. There-
fore, |B] >Zf’:11771i>l’k~ Hence, r;(8)=1 for any 1<i <, and, B =4(k).

Let k=2 If ry41(B)>1, for some 0<s</—1, then By > p—1+s. Therefore,

s+1 s+1
PN EDIIGN
i=1 i=1

I+1 I+1

> B> D s,

Jj=s+2 Jj=s+2
20+1 20+1

DBz D> sk

t=I1+2 =142
Hence,

s+1 I+1 20+1 s+1 I+1 20+1

BI=2 i+ 2 Bt 2 B> D 80+ 3 8+ D 8k

i=1 j=s+2 =142 i=1 j=s+2 1=1+2
=18(k)| = pk.

If ry41(B8) > 1, for some Il <s<k+1, then By >p—I1+s, and,

s+1 s+1
> Bi=> 8k
i=1 i=1

20+1 21+1

> B> D s

j=s+2 j=s+2
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Therefore,
s+1 21+1 s+1 21+1
BI=D B+ D Bi>D 8K+ D, 8(k)j=|8(k)|=pk.
i=1 j=s+2 i=1 j=s+2
Hence

rer1(B)>1=s=I1,
and g=45(k).

Recall that o = (ay,...,0r) € Z’é is called composition of n with length k if
Zf‘;l a; =n. Denote by Ci(n) set of compositions of n of length k. For o € Cy(n)
denote by sort(«) the composition « written in non-decreasing order. Note that
sort(e) gives us a partition of n. For example, sort((2,0,2,3,1))=(0,1,2,2,3).
For 0 =(0,02,...,0k4+1) € Ex41,0(n) set 6 = (o2, ..., 0x) € Ex(n).

For e € Ey, B e Exy set

M(a, B)={y € Ex|sort(a +y)=pB}.
For o EZ’S, B erJ define o~ 8 GZSH as a prepend « to S

a-B=(1,...,%, B1,---,B1)-

Let
0p=0),
0;,=(0,0,...,0), i>0.
—

i times

For a e Zk set

|0l| _H o+ Fo) (e tog)!
_1—1 [ T+ B apl ol
Let

Go={0Oh
Gr={()~0;_1valaeGy_;, i=1,2,...,k}, k>0.

EXAMPLE.
Gi={(D}, G2={2,0),d, D}, G3={3.,0,0),(2,0,1),(1,2,0), (1,1, D}.

LEMMA 12. If k=21—1 is odd,
MGSKk—1),5(k)={(p—I14+i)-0;_1va—0,_1laeCG—;,i=1,2,...,1}.
If k=2l is even,
M@k —1),8(k)={(p =D~ 01 —aleeG}.
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Proof. Evident.
EXAMPLE. If p=35, then

M((2),803)=M((0,4,6),(0,4,5,6))={4,1,0),(5,0,0)},
M((3),8(4))=M((0,4,5,6),(0,3,4,6,7)={(3,0,1,1),(3,0,2,0)}.

LEMMA 13.

> sign(a+(0,1,...,k—1))(§):1

aeGy

Proof. Induction on k. For k=1 our statement is evident. Suppose that it is true
for k—1. Note that

G =U{_{(1) = 0;_1 ~ Gy_i}.
For o € G_;,

(i) 0i_jwa+ 0,1, k—=D)=G,1,2,....i—1,ai4i,...,00_i +k—1),
and,

sign (1)< 0;_1—a+©0,1,....k—=1))=(=D""Tsign(@+(0,1,....,k—i —1)).

Further, for a € Gy_;,

((:) oljlva) ((:)ia)z(];)(k;i)'

Therefore,

. k
Z 31gn(a+(0,1,...,k—1))( ):
aGGk «

| k—i

Z Z (=D~ sign (@ +(0, 1, . 1—1))( )( ):
i=1 aeGy_; o
L k k—i
Z(—l)l’—l(i) > sign(a+(0,1,...,k—i—1))( . ):
i=1 a€Gp_;

(by inductive suggestion)

k k
i—1 _
§<—1> (l-)—l
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LEMMA 14.

-1 -1
Z(—l)"(’.’)=(—1>l—1(” )
Py i -1

Proof. Induction on [. If /=1, then our statement is evident. Suppose that it is
true for [ —1>1. Then

-1 -2
i(PY_ i P =1 P
;—1) (l.)—g( ) (l.)+< ) (1_1)
o=t (P u-if P
=(-1) (1_2)+< ) (1_1)
S| PY (P—1\\_, (u-1fP—1
= ((1—1) (1—2))‘( b (1—1)‘

LEMMA 15. If k=2]l—1, then
1

Z z sign (p—14+i)~0;_1va~0,_;

i=1 aeG_;

P _(r!
+(0,1,...,l—l,l,...,21—2))((p_l+i)va)—(1_1)'

If k=2l then

; p (P
Z sign (a + (0, 1’mJ_lD((p—l)vcx)_(l)'

el

Proof. Let k=2l—1. For e« € G;—; let ' («) eZ%l_1 be defined as
Fa)=(p—14+i)~0;_1va-0,_1+0O,p—I1+1,....,p—1,p+1,....,p+i—1).
Note that

Fra)=p-I1+i,p—I1+1,....,p—1l+i—l,a1+p—1+i,...,01_;
+p—1,p+1,...,p+i-1). (1)

By (1)
sort(T(@)=(p—I+1,....,p—I+i—1,p—1+i)
wsort(ey+p—I+i,...,q—i+p—1,p+1,...,p+I1—1).
Hence,
sort(I"(a)) =3 (k), aeG_i

¢
sort(ey +p—I+i,...,q—i+p—1,p+1,....,p+1—1)
=(p—Il+i+1l,....,p=1,p,p+1,....,p+i—1).
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Therefore, the condition sort(I"(«)) =8(k) is equivalent to the condition

sort(a; +p—I+i,...,u—i+p—-D=(p—I+i+1,....p—1,p). (2)

By ()

signT(@)=(=D""lsign(p—14+1,....p—I+i,a1+p—1+i,...

+p—1p+1,....p+1-1).

Therefore, by (2)

signF(a):(—l)i_lsign (e1+p—I1+i,...,00—i+p—1)

= (=D tsign (@, 0+ 1, ..., 00 +1—i—1). (3)

Hence,

é % 1gnF(a)( P ):

—l4+i)va

[by (3]

1 .
> > (—1)"1sign(a+(0,1,...,1—i—1))(lfi)(l_’)

o
i=1 aeG)_;

aeG_;

1 .
g(—l)"‘l(lfi) > sign(a+(0,1,...,l—i—1))(l;1)
(by Lemma 13)

1

i-1{ P
E(—n (z_,-)
-1
Z(—l)l—f—l(?):
j=0 /

(by Lemma 14)

(=)

So, our Lemma in case of odd k is proved.
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Let k=2I/. Then

Zsign(a—}—(o,l,...,l—l))( P )z
aeG ([)—l)VOl

zsign((al,al—}—l,...,oq—i—l—l)(p)(l):

I AN

aeqG

p , !

(l) Z s1gn((a1,ot1+1,...,otl-i-l—l)(a):
aeG

(by Lemma 12)

p
)
Our Lemma is proved completely.

LEMMA 16. Let uy be coefficient at a®*=Y of the element ad”(a®*=?), if k> 1,
and wy=1. If 1 <k <2p, then

1), if k=2l+1is odd,
Ik =
(5’:11), if k=2lis even.
Proof. Follows from Lemmas 12 and 15.

EXAMPLE. If p=35, then

k| 6(k—1) ik
11(0) 1
2 1 (0,5) 1
31 (0,4,6) 5
4 1(0,4,5,6) 4
5 1(0,3,4,6,7) 10
6 |(0,3,4,5,6,7) 6
7 1(0,2,3,4,6,7,8) 10
8 1(0,2,3,4,5,6,7,8) 4
9 1(0,1,2,3,4,6,7,8,9) | 5
10 | (0,1,2,3,4,5,6,7,8,9) | 1

The following two lemmas can be proved in a similar way as Lemmas 12 and 15.

LEMMA 17. Let 81(k) be maximal element in Eyi1o(pk—1). Then
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O,p—1, p—=142,....,p+1l—1), if k=2I,

81(k)=
1(6) [(O,p—l,p—l+l,...,p,p+2,...,p+l), ifk=21+1.

LEMMA 18. Let y be coefficient at a®®=V of ad?~1(a®*=2). Then

(1" 21)
=P Lk—2)/2)

if2<k<2p-—1.

LEMMA 19. Let v be coefficient at abk=1 of the element (ad”)*Y(a). Then

leader((@8”)F) = via®*—Dor.
Proof. Follows from Lemma 11.

LEMMA 20. For any 0<k<2p,

Vg = Wk Vk—1-

( Definition of uy see Lemma 16, and definition of vy see Lemma 19).

Proof. By Lemmas 8 coefficient at a’®=D of the element (ad”)* !(a) is a
non-negative integer that is no less than another non-negative integer (ad”)f~!
(ve—1a®*=2). By Lemma 16 the last number is equal to vi_jux.

EXAMPLE. Let p=3. Then
=1 ua=1,u3=3, u4=2, nus=3, ug=1

and

@d)?=3a"V8 + 340D 440D,

leader((a?)?)=a Y8, v, =1,

@) =18a"128° 4274013 P 4154 01D 5t 43401953
194029 1340298,

leader((ad)?) =3a*2YP,  13=3,

@d)*=126a129 30 11894 012D 5 19940129 5# 4 1840:1.2.6 53
175001390 4240 @139 46402395,

leader((@®)*) =6a">3Y3,  vy=6,

(@d)® =432 012399 1 432401239 54 11084123953 4 9040124953

leader((a83)5) =90a 12495 15=90,

(adP)6 = 904101234553,

leader((ad)%) = (ad®)® =a®Y&*,  vg=90.
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LEMMA 21. For any Xi,..., Xy € A,

sv (X1, XN) =0,
if N>2p and

52O, x0P, X2 )20P, ... X7 /2p —1)10P) = 1,0F.

Proof. Suppose that X; =u;0”, where u; € K[x]. Let us make specialization of
a in super-algebra Y. Take a = (ZzN=1 u;&)0P, where & are odd super-generators.
Then

@d”)N =sy 10, ..., unOP)E - -En.

By Lemma 10 (a9”)N =0, if N >2p. Therefore, sy =0 is identity if N >2p.
Now consider the case N =2p. Set a =Zl.2£0_1xi/i!§i+1 where & are odd ele-

ments and 9 acts on x' as usual, d(x’) =ix'~!. Then
(adP)?P =52,(07, x07, x2/20P, ..., x2P7 11 2p — 1)10P)E & - &)
Further,
a(0,1,2,2p71) za()(a)al (a) .. 82;771 (a)
2p—1 2p—1
Doxitg | [ D] AT G =D | Epor +xE2p)E2
i=0

i=0
=§&1& 5.

Therefore, by Lemma 10

52p(@, xOP, X7 )20P, ... X7 [ 2p = DIOPVErEy -+ Eap = (@DP)PP
=ApE1&r---5,0".

Hence

527, xP, x*20P, ..., x*P71j2p —1)19P) =1,0".

3. Equivalence of Left-Commutative and Right-Commutative Identities

LEMMA 22. 2n—2, 1)-type and (1,2n —2)-type identities are equivalent.

Proof. We have to prove that any n-algebra (A, ¢) with (2n —2, 1)-type identity

lcom =0,
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where

lcom(ty,...,thy—1)

= Z Signaw(ta(l)a < lom=1), 1p(l‘(r(n), -~-’ta(2n—2)vta(2n—l)))a
oes@n—21)

satisfies the identity
rcom =0,
where

rcom(t1,~~,f2n—l)= Z SigHUW(tl,ta(Z)v~~-vta(n—1), w(to'(n)v"‘vto’(zn—l)))’
oeS.2n=2)

and vice versa, any n-ary algebra with identity rcom =0 satisfies also the identity
lcom =0.
Let us prove that

nrcom(ty, ..., thy_1)=rcomi(ty, ..., 1), 4)
(n—"Dlcom(ty, ..., thy_1)=lcom(t, ..., 10y_1), Q)
where
2n—1
. .

reomi(ty, ..., ty—1)= Z:(—I)Hr lcom(ty, ... ti, ..., ty—1,1)

i=2

—(m—1lcom(t, ..., t2n—1, 1),

2n—2

» )
lcom(ty, ... 1) = Z:(—l)”r recom(ti, ty, ..., ti, ..., tn_1)
i=1

—(m=2)rcom(tyu—1,11, ..., tan-2).

Note that rcom(ti, ..., t,—1) and rcom(ty, ..., tr,_1) are skew-symmetric under
2n — 2 variables 1y, ...,1,_1. Therefore, it is enough to prove that coefficients
at Y, tu—1, Y tn,s s ton—2,t2p—1)) and Y (ta, ..., tn, (1, tys1, ..., t2p—1)) Of
rcom(ty, ..., ty—1) and rcom(ty,...,tr,—1) are equal.

It is easy to see that, if n <i <2n —1, then the coefficient at ¥ (¢q,...,t,—1, ¥

(tm ey thfl)) of
(=D com(ty, ... G, ... tp1, 1)

is equal to 1. If 1 <i <n, then this coefficient is 0. Therefore, the coefficient at
Yty oo tu1, Yty ..., t2y—1)) of rcomi(t1,...,t,—1) is equal to n.

Further, if n <i <2n—1, then the coefficient at ¥ (2, ..., ty, ¥ (11, tyt1s - - - » t2n—1))
of

(_1)i+1 lCOm(tl, RN t’;" cees b1, tl)
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is equal to 0. If 1 <i <n, then this coefficient is 1. Therefore, the coefficient at

Yty ooy by, Uttty - - - 1)) of rcom(ty,...,t,—1) is equal to 0.
Hence, relation (4) is proved completely.
By similar arguments one establishes (5).
Relations (4) and (5) show that identities rcom and Icom are equivalent.

4. Proof of Theorem 1
By Lemma 21 sy =0 is identity on A(lp) if N>2p. By Lemma 20

Ap=V2p=p2p---pavy>0.

Therefore, by Lemma 21 55, =0 is not polynomial identity and s, induces on Agp )
a non-trivial 2 p-commutator.
By Lemma 20 for any 1 <k<2p—-2

Ve > - -+ vy > 0.

Therefore, by Lemmas 8, 17 and 18 the differential (p + 1)-th order parts of (ad”)¥
are non-zero for any 2 <k <2p — 1. Therefore, s; is not well-defined on Ag” ).

Suppose that Aip ) has identity of degree no more than 2p. Then it has skew-
symmetric multi-linear consequence. In particular, it has a skew-symmetric poly-
nomial identity of degree 2p. But 55, =0, as we mentioned above, is not identity.
Contradiction.

Suppose that I is a non-trivial ideal of AY’ ) under 2p-commutator s;,. Take 0#
X =u0P €I with minimal degree s =degu. Let us prove that s=0 and X=no” €l
for some 0#ne K. Suppose that it is not true, and s >0. If s>2p —1, then by
Lemma 21

2p—1
52O, x0P, ... X2 X) =1, (2ps_ 1) HO VxS 2rHlgr e,
i

or,
T2 e

We obtain contradiction with minimality of s. If 0 <s <2p —1, then

2p—1
52p(@P, x0P, . x T lor X xHor P lory=a, [] itorel,
i=0

or,
oel.

Once again we obtain contradiction with minimality of s.
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So, we establish that X =7n0” €I, for some 0#n< K. Then for any />0,

2p—1

[+2p—1
szp(X,x&...,xzpzﬁp,xl”’)lap)znkp( —iZ_plil ) H itxlor el.

In other words, x'9” e I for any [>0. This means that I=A§p). So, (Aip),SQP) is
simple 2p-algebra.

By Theorem 1.1 (ii) of [4] the algebra (A, (p),s2,) is left-commutative. Presenta-
tion of 2p-commutator as a Vronskian up to scalar A, follows from Lemma 21.

5. Expressions for A,
In this section, we give some formulas for 1,. For s >0 let us define a polynomial
fsCer, oo, x2p—1)
2o esymy, SIENT (Yo ) (o) +X0@2) -+ (o) + X0+ +Xo@p-1))’

H1§i<j§2p(xi _xj)'

Then fy(x1,...,%2p—1) is a symmetric polynomial of degree (2p —1)(s — p). In par-
ticular, fp(x1,...,X2p_1)=A) is constant. The number X, appears also in calculating
2 p-commutator,

ui up ce uzp
O(uy) O(uy) < Ouap)
$2p(u1 07, urp0P) =1, : : : or.
PPt PPy o PP N ugy)
Then

Zaesymzp signo (c(1)(c(1)+0@2)---(c(1)+02)+---+02p—1)))?
H1§i<j§2p(i —J-

Ap=

For example,

A =1,2=2,43 =90, A4 = 586, 656, A5 = 1,915, 103, 977, 500.
26 =17,886, 133, 184, 567, 796, 056, 800.

Another way to calculate A,. Let M, be a set of matrices M = (m; ;) of order
2p—1)x(2p—1) such that

o m; e’y
o m;;=0ifi>j

2p—1 .
e Sums by rows are constant, zjl;l m; j=p for anyi

e Sums by columns r; = le:p l_lmi, j» are positive and different for all j =
1,2,....,2p—1.



2p-COMMUTATOR ON DIFFERENTIAL OPERATORS OF ORDER p

In particular,
M=(m;j)eM,=>m1=r1>0 and my,_12,-1=p.

For M € M, denote by r(M) the permutation r;...ry,_1 constructed by column
sums.

EXAMPLE. p=2. Then

1 10 1 0 1 1 10 2 00
Mpy=1A={0 I 1}|,B={0 2 0}),C=({0 2 0]),D=(0 1 1
0 0 2 0 0 2 0 0 2 0 0 2

r(A)=123, r(B) =123, r(C) =132, r(D)=213.

If MeM,, then a sequence r ...ry,_| induces a permutation, where r; ZZ./ mj i
are sums by columns. In particular, 1 <r; <2p—1 for any 1<i <2p—1. Then

2p—1
. 4
Ap= 51gnr(M) ( ),
p
s I
Ap= signr(M) ( )
2 1. .
lil j! Mem, mlj,...,mj,]

Here

n n!
ny,...ng)  npl---ng!

is a multinomial coefficient.
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