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An algebra A with multiplication A ×A → A; �a; b� 7→ a ◦ b; is called right-
symmetric, if a ◦ �b ◦ c� − �a ◦ b� ◦ c = a ◦ �c ◦ b� − �a ◦ c� ◦ b, for any a; b; c ∈
A. The multiplication of right-symmetric Witt algebras Wn = �u∂i x u ∈ U;U =
K�x±1

1 ; : : : ; x
±1
n �, or = K�x1; : : : ; xn�; i = 1; : : : ; n�; p = 0, or Wn�m� = �u∂i x u ∈

U;U = On�m��; p > 0, are given by u∂i ◦ v∂j = v∂j�u�∂i. An analogue of the
Amitsur–Levitzki theorem for right-symmetric Witt algebras is established. Right-
symmetric Witt algebras of rank n satisfy the standard right-symmetric identity of
degree 2n+ 1 x ∑σ∈Sym2n

sign�σ�aσ�1� ◦ �aσ�2� ◦ · · · ◦ �aσ�2n� ◦ a2n+1� · · ·� = 0. The min-
imal degree for left polynomial identities of W r sym

n ;W +r sym
n ; p = 0, is 2n + 1. All

left polynomial identities of right-symmetric Witt algebras of minimal degree follow
from the left standard right-symmetric identity sr sym

2n = 0, if p 6= 2. © 2000 Academic

Press

1. INTRODUCTION

Let sassk be the standard skew-symmetric associative polynomial in k vari-
ables,

sassk �t1; : : : ; tk� =
∑

σ∈Symk

sign�σ� tσ�1� · · · tσ�k�;

where Symk is the permutation group in k elements and sign�σ� is the sign
of a permutation σ . According to the Amitsur–Levitzki theorem [1] the
matrix algebra Matn satisfies the standard polynomial identity of degree
2n, ∑

σ∈Sym2n

signσ aσ�1� ◦ · · · ◦ aσ�2n� = 0;
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where a ◦ b is the usual matrix multiplication. Moreover, Matn has no poly-
nomial identity of degree less that 2n. For details on polynomial identities
of associative algebras see for example, [12].

The algebra W1 = �ei x ei ◦ ej = �i + 1�ei+j; i; j ∈ Z� is right-symmetric.
Since its Lie algebra is isomorphic to the Witt algebra W1 = �ei x �ei; ej� =
�j − i�ei+j� we call it a right-symmetric Witt algebra of rank 1 and denote
it by W r sym

1 . This algebra satisfies a right-symmetric identity

a ◦ �b ◦ c� − �a ◦ b� ◦ c = a ◦ �c ◦ b� − �a ◦ c� ◦ b
and a left-commutativity identity

a ◦ �b ◦ c� = b ◦ �a ◦ c�: (1)

Such algebras are called Novikov [9–11].
There is a generalization of the Witt algebra to the many variables case.

Let U be an associative commutative algebra with a set of commuting
derivations D = �∂i x i = 1; : : : ; n�. For any u ∈ U , an endomorphism
u∂i:U → U , such that �u∂i��v� = u∂i�v�, is a derivation of U . Denote by
UD a space of derivations

∑n
i=1 ui∂i. Endow this space by multiplication

u∂i ◦ v∂j x= v∂j�u�∂i:
We obtain a right-symmetric algebra UD. This algebra is called a right-
symmetric Witt algebra generated by U and D.

In our paper, U is K�x1; : : : ; xn�, or Laurent polynomial algebra
K�x±1

1 ; : : : ; x
±1
n �, or a divided power algebra On�m� = �xα x xαxβ =(α+β

α

)
xα+β�, if the characteristic of K is p > 0. As a Lie algebra the

Witt algebra of rank n is defined as a Lie algebra of derivations of U .
The multiplication u∂i ◦ v∂j = v∂j�u�∂i satisfies the right-symmetry iden-
tity. Obtained right-symmetric Witt algebras of rank n are denoted by
W

r sym
n or W +r sym

n or Wn�m�r sym, depending on U = K�x±1
1 ; : : : ; x

±1
n �, or

K�x1; : : : ; xn�, or On�m�. It is easy to observe that the right-symmetric Witt
algebras of rank n do not satisfy the left-commutativity identity if n > 1.

We are interested in the analogues of the left-symmetric identities for
the case of many variables. We suggest two ways to solve this problem.

In the first way we endow the vector space of the Witt algebra with two
multiplications: the multiplication �a; b� 7→ a ◦ b, mentioned above, and
the second multiplication defined by u∂i ∗ v∂j x= ∂i�u�v∂j . We obtain an
algebra with the following identities:

a ◦ �b ◦ c� − �a ◦ b� ◦ c − a ◦ �c ◦ b� + �a ◦ c� ◦ b = 0;

a ∗ �b ∗ c� − b ∗ �a ∗ c� = 0; (2)
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a ◦ �b ∗ c� − b ∗ �a ◦ c� = 0;

�a ∗ b− b ∗ a− a ◦ b+ b ◦ a� ∗ c = 0;

�a ◦ b− b ◦ a� ∗ c + a ∗ �c ◦ b� − �a ∗ c� ◦ b− b ∗ �c ◦ a� + �b ∗ c� ◦ a = 0:

Note that (2), for the multiplication ∗, is similar to the identity (1) for
the multiplication ◦. In the case of n = 1, these multiplications coincide
and all identities are reduced to two: right-symmetric identity and Novikov
identity. So, an algebra A with multiplications ◦ and ∗ can be considered
as a Novikov algebra in the general case.

The second way concerns identities of right-symmetric Witt algebras. In
this way we save right-symmetric multiplication �a; b� 7→ a ◦ b, and try
to construct an identity for its left multiplication operators. For a ∈ A,
denote by ra and la operators of right and left multiplications on A x bra =
b ◦ a; bla = a ◦ b (arguments are on the left side). In terms of right and
left multiplication operators the right-symmetry identity is equivalent to the
following conditions:

�ra; rb� = r�a; b�; �ra; lb� = lalb − lb◦a; ∀a; b ∈ A:

Let sr sym
k be the following skew-symmetric non-associative left polynomial

in k+ 1 variables:

s
r sym
k �t1; : : : ; tk; tk+1� =

∑
σ∈Symk

sign�σ� tσ�1� ◦ �tσ�2� ◦ · · · ◦ �tσ�k� ◦ tk+1� · · ·�:

Call it the standard polynomial of degree k + 1 (more exact names like
“standard left polynomial for right-symmetric algebras” or “standard right-
symmetric left polynomial” are too long and not convenient).

Note that sr sym
k is skew-symmetric in the first k variables t1; : : : ; tk. Let

skk x= sr sym
k ;

srk�t1; : : : ; tk� x= sr sym
k �t1; : : : ; t̂r ; : : : ; tk; tr�; 0 < r < k;

s
�l; r�
k �t1; : : : ; tk� x= sr sym

k �t1; : : : ; t̂l; : : : ; tk; tr�; l 6= r:

If sr sym
k = 0 is identity for right-symmetric algebra A, then slk = 0, s�l; r�k = 0,

are also identities for A.
Our main result is the following. In the case of right-symmetric Witt alge-

bras of any rank n for left multiplication operators the standard associative
polynomial identity of degree 2n holds,∑

σ∈Sym2n

signσ laσ�1� · · · laσ�2n� = 0;
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or in terms of the multiplication ◦, the following left polynomial identity of
degree 2n+ 1 is valid:∑

σ∈Sym2n

signσ aσ�2n� ◦ �aσ�2n−1� ◦ · · · ◦ �aσ�2� ◦ �aσ�1� ◦ a0�� · · ·� = 0:

We prove that in the space of left polynomial identities the degree 2n+ 1
for right-symmetric Witt algebras of rank n is minimal. We also prove
that any left polynomial identity of right-symmetric Witt algebras of rank
n of minimal degree follows from standard polynomial, if p 6= 2. More
exactly, the space of polynomial identities of minimal degree of right-
symmetric Witt algebras Wn;p = 0, �Wn�m�; p > 2� with N variables is
N
(
N
2n

)
-dimensional. If N = 2n+ 1, this space is �2n+ 1�2−dimensional and

has a basis consisisting of polynomials sl2n; s
l; r
2n ; l; r = 1; 2; : : : ; 2n+ 1; l 6= r.

The main tool used here is a functor E constructed in [4]. It allows one
to extend module structures, invariants, and identities of matrix algebras to
module structures, invariants, and identities of Witt algebras. It should be
mentioned that Witt algebras are considered not only in the Lie sense, but
also in sense of right-symmetric algebras. In particular, the Novikov identity
(1) that coincides with the identity sr sym

2 �a1; a2; a3� = 0 is an extension
of the Amitsur–Levitski identity for Mat1; i.e., it is a prolongation of the
commutativity condition of the main field. The generalized Novikov identity
is an extension of the Amitsur–Levitski identity from matrix algebras to the
right-symmetric Witt algebras (see Lemma 4.2). So, we can consider right-
symmetric algebras that satisfy the standard right-symmetric identity,∑

σ∈Sym2n

signσ aσ�1� ◦ aσ�2� ◦ · · · aσ�2n� ◦ a2n+1 = 0; (3)

as a generalization of Novikov algebras. This class of algebras includes Witt
algebras in the case of many variables.

The identity (1) is true for any associative commutative algebra U and
for a set D with one derivation ∂1. The identity (3) holds for any associative
commutative algebra U with a set of n commuting derivations D = �∂i; i =
1; : : : ; n�. Moreover, it holds for some right-symmetric deformations of
Witt algebras.

Regarding deformations of right-symmetric algebras and the description
of local deformations of A = W r sym

n ;W
+r sym
n , if p = 0, or Wn�m�, if p > 0

(see [6, 7]), as an example let us give some right-symmetric deformations
of A = W1 = �a = u∂ x u ∈ K�x±1��.

The space of local deformations of A is four-dimensional and generated
by classes of the following right-symmetric 2-cocycles:

ψ1�u∂; v∂� = x−1uv∂;

ψ2�u∂; v∂� = x−1∂�u�v∂;
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ψ3�u∂; v∂� = �u− x∂�u��∂�v�∂;
ψ4�u∂; v∂� = ∂�u�∂�v�∂:

If 91 =
∑4
k=1 εkψ

k is a 4-parametrical local deformation of A, is it possible
to construct prolongations 9l =

∑
�i�=l εiψi, where i = �i1; i2; i3; i4�; �i� =

i1 + i2 + i3 + i4? In other words, is it possible to find ψi ∈ C2
r sym�A;A�

such that a new multiplication,

a ◦ε b = a ◦ b+
∑
l

9l;

will be a right-symmetric multiplication over a field K��ε��? The answer is:
91 can be prolongated to a global deformation if and only if ε1ε4 + ε2ε3 =
0. We give prolongation formulas for some special cases.

The local deformation ε1ψ
1 + ε2ψ

2 of W1 has a trivial prolongation,

�u∂; v∂� 7→ ∂�u�v + ε1x
−1uv + ε2x

−1∂�u�v;
and is a right-symmetric multiplication. This algebra was obtained by
Osborn [11]. Notice that cocycles ψ3, ψ4 do not satisfy left-commutativity
identity. They are not Novikov cocycles [2]. Each of these cocycles has the
following prolongations:

�a; b� 7→ ∂�a�b+ ε3�x∂; a�
(∑

i

εi3�−1�ixi∂i/��ε3 + 1� · · · �iε3 + 1��
)
∂�b�;

(4)

�a; b� 7→ ∂�a�∑
i

εi4∂
i�b�:

In the case of (4) we should change expressions like �iε3 + 1�−1 to the
formal series 1 − iε3 + i2ε2

3 − i3ε3
3 + · · ·. Then we obtain a formal power

series

�a; b� 7→ ∂�a�b+ ε3�x∂; a�∂�b�
−ε2

3�x∂; a��x∂2 + x2∂3��b�
+ε3

3�x∂; a��x∂2 + 3x2∂3 + x3∂4��b�
−ε4

3�x∂; a��x∂2 + 7x2∂3 + 6x3∂4 + x4∂5��b�
+ε5

3�x∂; a��x∂2 + 63x2∂3 + 25x3∂4 + 10x4∂5

+ x5∂6��b� + · · · :
This is one of the prolongations of the local deformation ε3�x∂; a�∂�b�. It
would be interesting to construct prolongation formulas for a linear combi-
nation of cocycles and find polynomial identities of the obtained algebras.
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It is also interesting to find right polynomial identities of right-symmetric
algebras. Right multiplication operators satisfy Lie algebraic conditions and
in this case one can expect Lie algebraic difficulties (see [13, 14]). Let us
mention that an identity of degree 5 for the Lie algebra W +1 is true also for
right multiplication operators:∑

σ∈Sym4

signσ raσ�1�raσ�2�raσ�3�raσ�4� = 0:

Moreover, for right-symmetric Witt algebra UD, D = �∂�, the following
right polynomial identity of degree 3 holds:∑

σ∈Sym3

signσ�aσ�1� ◦ aσ�2�� ◦ aσ�3� = 0:

This identity follows from the Novikov identity (1).
For a right-symmetric algebra UD, where D = �∂1; ∂2�, the following

right polynomial identity of degree 7 is true:∑
σ∈Sym7

signσ�����aσ�1� ◦ aσ�2�� ◦ aσ�3�� ◦ aσ�4�� ◦ aσ�5�� ◦ aσ�6�� ◦ aσ�7� = 0:

We have checked it in Mathematica, which takes about 2 hours. Via Maple
we have checked that the minimal degree of a right polynomial identity for
D = �∂1; ∂2; ∂3� is 14. I am deeply grateful to C. Löfwall who wrote me
a program in Mathematica. It allows me to prove that the minimal right
polynomial identity for D = �∂1; ∂2; ∂3; ∂4� has degree 23.

Conjecture. The minimal degree of polynomial identities for right mul-
tiplications of right-symmetric Witt algebra Wn; n > 1, is n2 + 2n− 1.

We do not know if is it possible to obtain minimal right polynomial iden-
tity from the left standard identity. As we mentioned above, the answer to
this question in the case of n = 1 is positive.

Polynomials corresponding to pre-minimal identities also have interesting
properties. For example, the standard polynomial for right multiplication
operators,

sk�a1; : : : ; ak� =
∑

σ∈Symk

sign�σ� raσ�1� · · · raσ�k�;

for k = n2 + 2n − 2 induces k-ary operation in a space of deriva-
tions. For any derivations D1; : : : ;Dn2+2n−2 in n variables the operator
sn2+2n−2�D1; : : : ;Dn2+2n−2� is also a derivation. In particular, a subspace
of first order differential operators �∑n

i=1 ui∂i x i = 1; : : : ; n� of an alge-
bra of differential operators has �n2 + 2n− 2�-ary operation sassn2+2n−2. Here
u1; : : : ; un belong to any associative commutative algebra U with commut-
ing derivations ∂1; : : : ; ∂n. It is well known that the space of derivations in
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general is not close under the composition operation �D1;D2� 7→ D1D2,
but it is close under the commutator,

s2�D1;D2� = D1D2 −D2D1 = D2 ◦D1 −D1 ◦D2 ∈ DerU;

for any D1;D2 ∈ DerU . So, sassn2+2n−2 can be considered as a nontrivial
generalized commutator on the space of first order differential operators
in n variables. In this sense a minimal right polynomial identity for right-
symmetric algebras can be interpretered as a Jacobi identity for generalized
commutators. The number n2 + 2n− 2 here cannot be improved: sk = 0 is
an identity for Witt algebras, if k > n2 + 2n− 2, and a differential operator
sk�D1; : : : ;Dk� can have an order of more than 1 for some differential
operators of first order D1; : : : ;Dk, if k < n2 + 2n− 2.

These statements require long computer calculations. For example, for
constructing the generalized commutator s13 for D = �∂1; ∂2; ∂3� we spent
about half a year. I am deeply grateful to the Mittag-Leffler Institut, and to
Proffessor J. Mickelsson and K. O. Widman, the organizers of the program
“Topology and geometry of quantum fields,” for the beautiful possibility to
do computer calculations.

A complete text about right polynomial identities and generalized com-
mutators will be published elsewhere.

2. RIGHT-SYMMETRIC ALGEBRAS

Let A be an algebra with multiplication A×A→ A; �a; b� 7→ a ◦ b. Let
�a; b; c� = a ◦ �b ◦ c� − �a ◦ b� ◦ c be an associator of elements a; b; c ∈ A.
Associative algebras are defined by condition �a; b; c� = 0, for any a; b; c ∈
A. Right-symmetric algebras are defined by identity

�a; b; c� = �a; c; b�;
i.e., by identity

a ◦ �b ◦ c� − �a ◦ b� ◦ c = a ◦ �c ◦ b� − �a ◦ c� ◦ b:
The left-symmetric identity is

�a; b; c� = �b; a; c�:
There is a one-to-one correspondence between right-symmetric and left-
symmetric algebras. Namely, if �a; b� → a ◦ b is right(left)-symmetric, then
a new multiplication, �a; b� 7→ b ◦ a, is left(right)-symmetric. In our pa-
per left-symmetric algebras are not considered. Right-symmetric algebras
are sometimes called Vinber or Vinberg–Kozsul algebras [15, 8]. Right-
symmetric algebras are Lie-admissible, i.e., under the commutator �a; b� =
a ◦ b− b ◦ a, we obtain a Lie algebra.
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Any associative algebra is right-symmetric. In a such cases, we will use
notations like Aass, if we consider A as an associative algebra, and Ar sym, if
we consider A as a right-symmetric algebra. Similarly, for a right-symmetric
algebra A the notation Ar sym will mean that we use only right-symmetric
structure on A, and Alie stands for a Lie algebra structure under the com-
mutator �a; b� 7→ �a; b�.

In terms of operators of right multiplication ra and left multiplication la
of the algebra A,

arb x= a ◦ b; alb x= b ◦ a;
right-symmetry identities are equivalent to the following conditions:

�ra; rb� − r�a; b� = 0;

�ra; lb� − lalb + lb◦a = 0:

Let Ar = �ar x a ∈ A� and Al = �al x a ∈ A� be two copies of A, and let
A = Ar ⊕Al be their direct sum. Let T �A� = K ⊕ A ⊕ A ⊗ A ⊕ · · · be the
tensor algebra of A. A universal enveloping algebra of A, denoted by U�A�,
is defined as a factor-algebra of T �Ar ⊕ Al� over an ideal generated by
�ar; br� − �a; b�r; �ar; bl� − albl + �b ◦ a�l. Denote elements of U�A� corre-
sponding to ar; al by ra; la.

A vector space M with two actions of A,

�M;A� →M; �m;a� 7→ ma

(left action) and

�A;M� →M; �a;m� 7→ am

(right action), is called a module over a right-symmetric algebra A, if

�ma�b−m�a ◦ b� = �mb�a−m�b ◦ a�;
�am�b− a�mb� = �a ◦ b�m− a�bm�;

for any a; b; c ∈ A, and m ∈M . Notice that the right action induces a right
Lie-module structure on M ,

m�a; b� = �ma�b− �mb�a; a; b ∈ A; m ∈M:
A module with trivial left action, am = 0, for any a ∈ A;m ∈ M , is called
right antisymmetric.

Let B be a subalgebra of A. Let

Zl:assA �B� = �a ∈ A x �a; b1; b2� = 0; ∀b1; b2 ∈ B�;
Zr:assA �B� = �a ∈ A x �b1; b2; a� = 0; ∀b1; b2 ∈ B�;
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be left and right associative centralizers of B in A. Let

Nl:ass
A �B� = �a ∈ A x �a; b1; b2� ∈ B;∀b1; b2 ∈ B�;

Nr:ass
A �B� = �a ∈ A x �b1; b2; a� ∈ B;∀b1; b2 ∈ B�;

be the left and right normalizers of B in A. It is clear that

Zl:assA �B� ⊆ Nl:ass
A �B�;

Zr:assA �B� ⊆ Nr:ass
A �B�:

Let

Zleft
A �B� = �a ∈ A x a ◦ b = 0; ∀b ∈ B�;

Z
right
A �B� = �a ∈ A x b ◦ a = 0; ∀b ∈ B�;

be left and right centralizers of B in A and

N left
A �B� = �a ∈ A x a ◦ b ∈ B; ∀b ∈ B�;

N
right
A �B� = �a ∈ A x b ◦ a ∈ B; ∀b ∈ B�;

be left and right normalizers of B in A. We have

Zleft
A �B� ⊆ Zl:assA �B�;

Z
right
A �B� ⊆ Zr:assA �B�;
N left
A �B� ⊆ Nl:ass

A �B�;
N

right
A �B� ⊆ Nr:ass

A �B�:
For the left cases and if A = B we reduce these notations: Z�A� =

Zleft
A �A�, N�A� = N left

A �A�, Zright�A� = Zright
A �A�, Nright�A� = Nright

A �A�,
Zl:ass�A� = Zl:assA �A�;Nl:ass�A� = Nl:ass

A �A�, Zr:ass�A� = Zr:assA �A�;
Nr:ass�A� = Nr:ass

A �A�.
We call Z�A� and Zright�A� the left and right centers of A. We also call

Zl:ass�A� and Zr:ass�A� left and right associative centers of A.
Left (right) associative centers are closed under multiplication ◦. To see

this let us consider for simplicity the case of left associative centers. Suppose
that X;Y ∈ Zl:ass�A�. Then according to the right-symmetric identity

�X ◦ Y � ◦ �a ◦ b� = X ◦ �Y ◦ �a ◦ b�� = X ◦ ��Y ◦ a� ◦ b�
= �X ◦ �Y ◦ a�� ◦ b = ��X ◦ Y � ◦ a� ◦ b:

So, X ◦ Y ∈ Zl:ass�A�, and Zleft�A� is a subalgebra of A.
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Notice that Z�A� and N�Z�A�� are also subalgebras of A:

�z1 ◦ z2� ◦ a = z1 ◦ �z2 ◦ a� − �z1; a; z2� = 0;

��n1 ◦ n2� ◦ z� ◦ a = �n1 ◦ �n2 ◦ z�� ◦ a− �n1; z; n2� ◦ a = 0;

for any a ∈ A; z1; z2 ∈ Z�A�; n1; n2 ∈ N�Z�A��. The same is true for
Zright�A� and Nright�Zright�A��.

Proposition 2.1. If z ∈ Z�A�, then rz is a derivation of A.

Proof. Since z ◦ b = 0, we have a ◦ �z ◦ b� = 0. According to the right-
symmetric identity

�a ◦ b� ◦ z = a ◦ �b ◦ z� + �a ◦ z� ◦ b;
for any a; b ∈ A.

Proposition 2.2. For any z ∈ Z�A�; a ∈ N�Z�A��, and for any b ∈ A,

a ◦ �b ◦ z� = �a ◦ b� ◦ z:
Proof. Let z ∈ Z�A�. Then z ◦ b = 0, and a ◦ �z ◦ b� = 0. Let a ∈

N�Z�A��. Then �a ◦ z� ◦ b = 0. So,

a ◦ �b ◦ z� − �a ◦ b� ◦ z = a ◦ �z ◦ b� − �a ◦ z� ◦ b = 0:

Corollary 2.3. For N = N�Z�A��,
Zleft�A� ⊆ Zr:ass�N�:

Proof. Evident.

Corollary 2.4. For any a1; : : : ; an−1 ∈ N�Z�A��, and an ∈ A, z ∈
Z�A�, the following relation holds:

a1 ◦ a2 ◦ · · · an−1 ◦ an ◦ z = �a1 ◦ a2 ◦ · · · an−1 ◦ an� ◦ z:
Proof. For n = 2, the statement follows from Proposition 2.2. Suppose

that this is also true for n− 1. Then by Proposition 2.2

a1 ◦ �a2 ◦ · · · �an−1 ◦ �an ◦ z�� · · ·�
= a1 ◦ ��a2 ◦ · · · �an−1 ◦ an� · · ·� ◦ z�
= �a1 ◦ �a2 ◦ · · · �an−1 ◦ an� · · ·�� ◦ z:
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Proposition 2.5. Let U be a right antisymmetric A-module and let

A ∪U → A

be a pairing of A-modules,

a ◦ �b ∪ u� = �a ◦ b� ∪ u;
�a ∪ u� ◦ b = �a ◦ b� ∪ u+ a ◦ �u ◦ b�;

(5)

for any a; b ∈ A;u ∈ U (about cup-products see [6]). Suppose that any ele-
ment of A can be presented by a cup-product as z ∪ u, for some u ∈ U and
z ∈ Z�A�. Then for any a1; : : : ; an−1 ∈ N�Z�A��, and an ∈ A,

a1 ◦ a2 ◦ · · · an−1 ◦ an ◦ a = �a1 ◦ a2 ◦ · · · an−1 ◦ an� ◦ a:
Proof. Let a = z ∪ u. Then by (5), and Corollary 2.4,

a1 ◦ �a2 ◦ · · · �an−1 ◦ �an ◦ a�� · · ·�
= a1 ◦ ��a2 ◦ · · · �an−1 ◦ ��an ◦ z� ∪ u���
= a1 ◦ �a2 ◦ · · · �an−1 ◦ �an ◦ z�� · · ·� ∪ u
= �a1 ◦ �a2 ◦ · · · �an−1 ◦ an� · · ·�� ◦ z� ∪ u
= �a1 ◦ �a2 ◦ · · · �an−1 ◦ an� · · ·�� ◦ �z ∪ u�
= �a1 ◦ �a2 ◦ · · · �an−1 ◦ an� · · ·�� ◦ a:

Proposition 2.6. Zl:ass�A� ⊆ N�Z�A��.
Proof. Let a ∈ Zl:ass�A�. Then for any z ∈ Z�A�, and any b ∈ A,

�a ◦ z� ◦ b = a ◦ �z ◦ b� − �a; b; z� = 0:

Example 1. Any associative algebra is right-symmetric. As associative
algebras the matrix algebra Matn give us examples of right-symmetric alge-
bras.

Example 2. Let U be an associative algebra with commuting deriva-
tions D = �∂i; i = 1; : : : ; n�. Then an algebra of derivations UD = �u∂i x
u ∈ U; ∂i ∈ D� with multiplication u∂i ◦ v∂j = v∂j�u�∂i is right-symmetric.
Since the Lie algebras corresponding to UD are Witt algebras, i.e.,

�u∂i; v∂j� = −u∂i ◦ v∂j + v∂j ◦ u∂i = u∂i�v�∂j − v∂j�u�∂i;
we call such algebras right-symmetric Witt algebras.
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Let 0n be a set of n-typles α = �α1; : : : ; αn�, where αi are integers. Let
0+n be its subset consisting of such α that αi ≥ 0; i = 1; : : : ; n. In the case
of p = char K > 0, we consider a subset 0n�m� = �α x 0 ≤ αi < pmi; i =
1; : : : ; n�, where m = �m1; : : : ;mn�;mi > 0;mi ∈ Z; i = 1; : : : ; n.

For char K = 0 suppose that

U = K�x±1
1 ; : : : ; x

±1
n � = �xα =

k∏
i=1

x
αi
i x α ∈ 0n�

is an algebra of Laurent polynomials and

U+ = K�x1; : : : ; xn� = �xα x α ∈ 0+n �;
its subalgebra of polynomials.

Let

On�m� = �x�α� =
∏
i

x
�αi�
i x α ∈ 0n�m�; i = 1; : : : ; n�

be a divided power algebra if char K = p > 0. Recall that On�m� is pm-
dimensional and the muliplication is given by

x�α�x�β� =
(
α+ β
α

)
x�α+β�;

where m =∑i mi, and(
α+ β
α

)
=∏

i

(
αi + βi
αi

)
;

(
n

l

)
= n!
l!�n− l�! ; n; l ∈ Z+:

Let εi = �0; : : : ; 1
i
; : : : ; 0�. Define ∂i as a derivation of U ,

∂i�xα� = αixα−εi ; p = 0;

∂i�x�α�� = x�α−εi�; p > 0:

Denote the right-symmetric algebras UD;U+D for U = K�x±1; : : : ; x±1
n �

as W
r sym
n and W

+r sym
n . Similarly, denote the right-symmetric algebra

On�m�D as Wn�m�r sym.
As in the case of Lie algebras, A = W r sym

n has a grading

A = ⊕kAk; Ak ◦Al ∈ Ak+l; k; l ∈ Z;

Ak = �xα∂i x �xα� = �α� =
n∑
i=1

αi = k+ 1�:

This grading induces gradings on W +r sym
n and W r sym

n �m�.
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Example 3. Let A be an associative algebra, C∗�A;A� = ⊕kCk�A;A�,
and Ck�A;A� = �ψ x A × · · · ×A → A� be a space of polylinear maps
with k-arguments, if k > 0, C0�A;A� = A, and Ck�A;A� = 0, if k < 0.
Endow C∗�A;A� by a “shuffle product” multiplication

C∗�A;A� × C∗�A;A� → C∗−1�A;A�:
Corresponding to ψ ∈ Ck+1�A;A�; φ ∈ Cl+1�A;A�; their shuffle product
ψ ◦φ ∈ Ck+l+1�A;A�; k; l ≥ 0 is given by

ψ ◦φ�a1; : : : ; ak+l+1�
=∑ψ�φ�aσ�1�; : : : ; aσ�k+1��; aσ�k+2�; : : : ; aσ�k+l+1��;

where the summation is over permutations σ ∈ Symk+l+1, such that σ�1� <
· · · < σ�k+ 1�; σ�k+ 2� < · · · < σ�k+ l + 1�.

Let εk ∈ Ck+1�A;A�; k ≥ 0, be a standard skew-symmetric polynomial
with shifted index: εk = sassk+1.

Then [3]

εi ◦ ε2k = �i+ 1�ε2k+i;

ε2k+1 ◦ ε2l+1 = 0;

ε2k ◦ ε2l+1 = ε2k+2l+1;

for any k; l; i ≥ 0.
Therefore, the algebra of standard polynomials under the shuffle product

is isomorphic to the right-symmetric algebra A0 ⊕A1, such that

A0 = �ei x i ≥ 0�; A0 ◦A0 ⊆ A0;

ei ◦ ej = �i+ 1/2�ei+j; 0 ≤ i; j;
A1 = �xj+1 x j ≥ 0�; A1 ◦A1 = 0;

A0 ◦A1 ⊆ A1; A1 ◦A0 ⊆ A1;

xi+1 ◦ xj+1 = 0; ei ◦ xj+1 = �1/2�xi+j+1; i; j ≥ 0:

This isomorphism is given by

ei 7→ ε2i/2; xj+1 7→ ε2j+1;

where i; j = 0; 1; 2; : : : .
This algebra has also a multiplication ∪:C∗�A;A� ⊗ C∗�A;A� →

C∗�A;A�, which called a cup-product,

ψ ∪ φ�a1; : : : ; ak+l�
= ∑

σ∈Symk+l;σ�1�<···<σ�k�;
σ�k+1�<···<σ�k+l�

ψ�aσ�1�; : : : ; aσ�k��φ�aσ�k+1�; : : : ; aσ�k+l��:
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Then

εi ∪ εj = εi+j+1;

for any i; j ≥ 0. In particular, a subalgebra generated by εi, is a commuta-
tive associative algebra under a cup-product. These multiplications satisfy
the conditions

�εi ∪ εj� ◦ εk = �−1�k�j−1��εi ◦ εk� ∪ εj + εi ∪ �εj ◦ εk�;
�a ∪ b� ∪ c = a ∪ �b ∪ c�;

a ∪ b = b ∪ a;
where b ∈ Ck�A;A�; c ∈ Cj�A;A�. So, an algebra of standard polynomials
has the structure of a Poissson–Novikov algebras in the sense of [5].

3. RIGHT-SYMMETRIC IDENTITIES

Right-symmetric algebras are not associative. They are not even power-
associative. In defining polynomials for right-symmetric algebras one should
fix the positions of the brackets. Further, expressions like t1 ◦ t2 ◦ · · · ◦ tk−1 ◦
tk will mean a right normed element t1 ◦ �t2 ◦ �· · · ◦ �tk−1 ◦ tk� · · ·��. For
any finite sequence of integers i = �i1; i2; : : : ; ik�, with il = 1; : : : ;N , and
l = 1; : : : ; k, where k is any integer, set t i = ti1 ◦ : : : ◦ tik . Elements of the
form T = λit

i, where λi ∈ K, are called (left) monomials with N variables
and tik is called as the head of the monomial T. If λi = 0, then the monomial
t i is called trivial. If we would like to pay attention to monomials with
λi 6= 0, then we call λit

i a nontrivial monomial. The sum of monomials is
called a (left) polynomial. For a polynomial

f =∑
i

λit
i ∈ Rleft

N ;

we will say that f has a monomial λit
i, if λi 6= 0. If a (left) polynomial g is

a sum of some monomials of f , then g is called a part of f .
A space of (left) polynomials in variables t1; : : : ; tN is denoted

by Rleft�t1; : : : ; tN� or simply Rleft
N . Suppose that f ∈ Rleft

N , i.e., f =
f �t1; : : : ; tN�, and f 6∈ Rleft

N−1. In such cases we will say that f depends on
N variables.

For a monomial t i, where i = �i1; : : : ; ik�, we denote by degtr �t i� the
number of indices i1; : : : ; ik that are equal to r. This number is called the
tr-degree of t i. If degtr t

i > 0, and λi 6= 0, then tr is said to be an essential
variable for λit

i and λit
i is then called r-essential. Let R be a subset of

the set �1; : : : ;N�. A nontrivial monomial λit
i is called R-essential, if it is
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r-essential, for any r ∈ R. A left polynomial f ∈ Rleft
N is called R-essential if

all its nontrivial monomials are R-essential. If R = �1; : : : ;N�, then an R-
essential polynomial is called essential. If R = �1; : : : ; r − 1; r + 1; : : : ;N�,
then an R-essential polynomial is called r̂-essential.

The maximal tr-degree of monomials of f is called the tr-degree of f
and is denoted by degtr f . Let τr�f � be a sum of monomials with tr-degree
degtr f . Call it the tr-leading part of f .

The degree of the nontrivial monomial λiti1 ◦ · · · ◦ tik is by definition k

deg t i = �i� = k:

The maximal degree of the nontrivial monomials of f is called the degree
of the polynomial f ,

deg f = max��i� x λi 6= 0�:

Let

1tr; x; y :R
left
N �t1; : : : ; tN� → Rleft

N+1�t1; : : : ; tr−1; x; y; tr+1; : : : ; tN�

be a linearization operator defined by the rule

1tr; x; yf �: : : ; tr−1; x; y; tr+1; : : :�
= f �: : : ; tr−1; x+ y; tr+1; : : :� − f �: : : ; tr−1; x; tr+1; : : :�
− f �: : : ; tr−1; y; tr+1; : : :�:

Observe that

1tr; x; yf = 0;

if and only if f is linear in the rth variable or f does not depend on tr , i.e.,
degtr f ≤ 1. So, we have the following proposition.

Proposition 3.1. If

1tr; tr; 1;tr; 2
· · ·1tr; tr ; tr; l−1

1tr; tr ; tr; l f = 0;

then

τr�f � = 0;

in other words

degtr f < l:
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Proposition 3.2. Let f ∈ Rleft
N �t1; : : : ; tN�, and let

g = 1tr; tr; 1; tr; 2
1tr; tr ; tr; 3

· · ·1tr; tr ; tr; l f:
Then

g�: : : ; tr−1; tr; 1; : : : ; tr; l; tr+1; : : :� = g�: : : ; tr−1; tr;σ�1�; : : : ; tr;σ�l�; tr+1; : : :�;
for any σ ∈ Syml.

Proof. We will argue by induction on l. If l = 1, the statement is trivial.
Suppose that for l − 1 Proposition 3.2 is true and prove it for l. Let

h = 1tr; tr ; tr; 3
· · ·1tr; tr ; tr; l f:

Then

g = 1tr; tr; 1; tr; 2
h:

For i = 2, we have

g�: : : ; tr−1; tr; 1; tr; 2; tr; 3; : : : ; tr; l; tr+1; : : :�
= h�: : : ; tr−1; tr; 1 + tr; 2; tr; 3; : : : ; tr; l; tr+1; : : :�
−h�: : : ; tr−1; tr; 1; tr; 3; : : : ; tr; l; tr+1; : : :�
−h�: : : ; tr−1; tr; 2; tr; 3; : : : ; tr; l; tr+1; : : :�
= h�: : : ; tr−1; tr; 2 + tr; 1; tr; 3; : : : ; tr; l; tr+1; : : :�
−h�: : : ; tr−1; tr; 2; tr; 3; : : : ; tr; l; tr+1; : : :�
−h�: : : ; tr−1; tr; 1; tr; 3; : : : ; tr; l; tr+1; : : :�
= g�: : : ; tr−1; tr; 2; tr; 1; tr; 3; : : : ; tr; l; tr+1; : : :�:

So, if l = 2, the statement is established.
Consider the case l > 2. By the inductive hypothesis, g is symmetric in

the variables tr; 3; : : : ; tr; l. In order to simplify notations, set x = tr; 1; y =
tr; 2; tr; 3, and instead of expressions like

g�: : : ; tr−1; tr; 1; tr; 2; tr; 3; : : : ; tr; l; tr+1; : : :�;
write more simply G�x; y; z�. It is enough to prove that

g�: : : ; tr−1; tr; 1; tr; 2; tr; 3; : : : ; tr; l; tr+1; : : :�
= g�: : : ; tr−1; tr; 1; tr; 3; tr; 2; : : : ; tr; l; tr+1; : : :�;

or in our short notations,

G�x; y; z� = G�x; z; y�: (6)
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Let

q = 1tr; tr ; tr; 4
· · ·1tr; tr ; tr; l f;

if l > 3, and

q = f;
if l = 3. Then

h = 1tr; tr ; tr; 3
q:

We have

G�x; y; z� = H�x+ y; z� −H�x; z� −H�y; z�
= Q�x+ y + z� −Q�x+ y� −Q�z� −Q�x+ z� +Q�x� +Q�z�
−Q�y + z� +Q�y� +Q�z�
= Q�x+ y + z� −Q�x+ y� −Q�x+ z� −Q�y + z�
+Q�x� +Q�y� +Q�z�

and

G�x; z; y� = H�x+ z; y� −H�x; y� −H�z; y�
= Q�x+ z + y� −Q�x+ z� −Q�y�
−Q�x+ y� +Q�x� +Q�y�
−Q�z + y� +Q�z� +Q�y�
= Q�x+ y + z� −Q�x+ z� −Q�x+ y� −Q�y + z�
+Q�x� +Q�y� +Q�z�:

So, (6) is established and therefore Proposition 3.2 is proved completely.

Let f ∈ Rleft
N . We will say that f = 0 is a right-symmetric (left) identity for

the right-symmetric algebra A, if f �a1; : : : ; aN� = 0, for any a1; : : : ; aN ∈
A. Let ρ = �i1; : : : ; iN�, where i1; : : : ; iN = 1; : : : ;N (indexes ik and il
may be equal for some k; l). Let f ρ be a polynomial obtained from f by
substitution tk 7→ tik ; k = 1; : : : ;N ,

f ρ�t1; : : : ; tN� = f �ti1; : : : ; tiN �:
Notice that f ρ is a left polynomial and if f = 0 is a polynomial identity
on A, then f ρ = 0 is also a left polynomial identity on A. In particular, if
s

r sym
k = 0 is a right-symmetric left identity for A, then slk = 0 and s�l; r�k = 0

are also right-symmetric left identities, where l; r = 1; : : : ;N; l 6= r.
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Suppose that A is a graded right-symmetric algebra,

A = ⊕iAi; Ai ◦Aj ⊆ Ai+j :

Elements of Ai are called homogeneous elements of weight i. The notation
�a� = i will mean that a is a homogeneous element of A and a ∈ Ai.
The element obtained from t i by substituting ti x= ai we denote by ai.
For a graded right-symmetric algebra A and for any monomial t i, where
i = �i1; : : : ; ik�, it is evident that

ai ∈ A�ai1 �+···+�aik �: (7)

In our paper we deal only with left polynomial identities.
The following left polynomial of Rleft

k+1 is called the left standard polyno-
mial of degree k+ 1 for right-symetric algebras:

s
r sym
k �t1; : : : ; tk+1� =

∑
σ∈Symk

signσtσ�1� ◦ · · · ◦ tσ�k� ◦ tk+1:

Note that it can be considered as an associative standard polynomial of
degree k for left multiplications in the universal enveloping algebra of right-
symmetric algebras [6]. If

sassk �lt1; : : : ; ltk� =
∑

σ∈Symk

signσ ltσ�1� · · · ltσ�k�;

then

s
r sym
k �t1; : : : ; tk; tk+1� = �tk+1�sassk �lt1; : : : ; ltk�:

Denote by N the set of indices �1; : : : ;N�. Let I = �h1; : : : ; hk� ⊆
N . If I has 2n + 1 elements, one can consider standard left polynomials
sr2n; I; s

�l; r�
2n; I ∈ Rleft

N , having variables, indexed by elements of I,

sr2n; I�th1
; : : : ; th2n+1

� = ∑
σ∈Sym2n

signσ thσ�1� ◦ · · · ◦ t̂hr · · · ◦ thσ�2n+1� ◦ thr ;

s
�l; r�
2n; I�th1

; : : : ; th2n+1
� = ∑

σ∈Sym2n

signσ thσ�1� ◦ · · · t̂hl · · · ◦ thσ�2n+1� ◦ thr :

If I has 2n elements and r ∈ N , then one can consider the polynomial
s2n; I; r in variables th1

; : : : ; th2n
; tr , defined as follows:

sr2n; I�th1
; : : : ; th2n

; tr� =
∑

σ∈Sym2n

signσ thσ�1� ◦ · · · ◦ thσ�2n� ◦ tr :

If r 6∈ I, and J = I ∪ �r�, then s2n; I; r is a left polynomial with 2n + 1
variables indexed by a set J = I ∪ �r� and

s2n; I; r = sr2n; J:
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If r ∈ I, then s2n; I; r is a left polynomial in 2n variables indexed by I and
degtr s2n; I; r = 2, and

s2n; I; r = s�l; r�2n; J;

for any l 6∈ I, and J = I ∪ �l�.
Note that the left polynomials s2n; I; r , for 2n elements subset I ⊆ N and

r ∈ N are defined uniquely by the pair �I; r�. If I ′ = �i′1; : : : ; i′2n� is another
subset of the set N with 2n elements, r ′ ∈ N , then

sr2n; I�ti′1; : : : ; ti′2n ; tr ′ � = 0;

for �I; r� 6= �I ′; r ′�.
The following is our main result.

Theorem 3.3. Let A be one of the following right-symmetric algebras
W

r sym
n �p = 0�;W +r sym

n �p = 0�;W r sym
n �m��p > 0�.

(i) A satisfies the right-symmetric standard identity of degree 2n+ 1,∑
σ∈Sym2n

signσ aσ�1� ◦ aσ�2� ◦ · · · aσ�2n� ◦ a2n+1 = 0;

for any a1; : : : ; a2n+1 ∈ A. In particular, the left polynomials sl2n; s
�l; r�
2n ; l; r =

1; : : : ; 2n+ 1; l 6= r, also give right-symmetric identities for A.
(ii) A has no nontrivial left polynomial identity of degree less than

2n+ 1.
(iii) �p 6= 2�. The space of minimal left polynomial identities with

N variables is N
(N

2n

)
-dimensional and left polynomials s2n; I; r , where I runs

through all subspaces of N with 2n elements and r ∈ N , generate a basis.
In particular, the space of minimal polynomial identities of 2n + 1 vari-
ables is �2n + 1�2-dimensional and has a basis consisting of left polynomials
sl2n; s

�l; r�
2n ; l; r = 1; : : : ; 2n+ 1; l 6= r.

Proof of theorem 3.3 will be given in Section 4.

Example. W
r sym

1 has no polynomial identity of degree 2. Any left poly-
nomial f of degree 3 such that f = 0 is the identity on W

r sym
1 is a linear

combination of the following nine left polynomials:

s1
2�t1; t2; t3� = t2 ◦ �t3 ◦ t1� − t3 ◦ �t2 ◦ t1�;
s2

2�t1; t2; t3� = t1 ◦ �t3 ◦ t2� − t3 ◦ �t1 ◦ t2�;
s3

2�t1; t2; t3� = t1 ◦ �t2 ◦ t3� − t2 ◦ �t1 ◦ t3�;
s
�1; 2�
2 �t1; t2; t3� = t2 ◦ �t3 ◦ t2� − t3 ◦ �t2 ◦ t2�;
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s
�1; 3�
2 �t1; t2; t3� = t2 ◦ �t3 ◦ t3� − t3 ◦ �t2 ◦ t3�;
s
�2; 1�
2 �t1; t2; t3� = t1 ◦ �t3 ◦ t1� − t3 ◦ �t1 ◦ t1�;
s
�2; 3�
2 �t1; t2; t3� = t1 ◦ �t3 ◦ t3� − t3 ◦ �t1 ◦ t3�;
s
�3; 1�
2 �t1; t2; t3� = t1 ◦ �t2 ◦ t1� − t2 ◦ �t1 ◦ t1�;
s
�3; 2�
2 �t1; t2; t3� = t1 ◦ �t2 ◦ t2� − t2 ◦ �t1 ◦ t2�:

4. IDENTITIES OF RIGHT-SYMMETRIC WITT ALGEBRAS

If otherwise is not stated, in this section A will denote W r sym
n ;W

+r sym
n ,

or W r sym
n �m�; p > 0 and A+ will denote W +r sym

n . Let U = K�x±1
1 ; : : : ; x

±1
n �,

K�x1; : : : ; xn�, or On�m�, if A = Wn;W +n , or Wn�m�. Let

A+−1 = �∂i x i = 1; : : : ; n�;
A+0 = �xi∂j x i; j;= 1; : : : ; n�:

Lemma 4.1 [6].

Z�A� = A+−1;

N�Z�A�� = A+−1 ⊕A+0 :
The subalgebra A+0 is associative and isomorphic to Matn. In particular,
N�Z�A�� has a subalgebra isomorphic to Matn.

Lemma 4.2. For any uk∂i1; : : : ; uk∂ik; u∂r ∈ A, the following formula
holds:

sk�u1∂i1; : : : ; uk∂ik; u∂r�
=∑n

j1; :::; jk=1 ∂j1�u1� · · · ∂jk�uk�u∂r�sassk �xj1∂i1; : : : ; xjk∂ik��:
Proof. Let L be Wn as a Lie algebra. L acts on associative commutative

algebra U as a derivation algebra:

l�uv� = l�u�v + ul�v�; ∀l ∈ L;u; v ∈ U:
Morover, the adjoint L-module L has an additional structure of a module
over U ,

u �v∂i� = uv∂i;
such that

l�ul1� = l�u�l1 + l�ul1�; ∀l; l1 ∈ L;u ∈ U:
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In the terminology of [4], L is an �L;U�-module with base L+−1.
Let Ck�L;L� be the space of polylinear maps with k arguments
L× · · · × L→ L and let Ck�L;L�L+−1 be the subspace of L+−1−invariants,
i.e., the space of polylinear maps ψ x L× · · · × L→ L, such that

δψ�l1; : : : ; lk� =
k∑
i=1

ψ�l1; : : : ; li−1; �δ; li�; li+1; : : : ; lk�;

for any l1; : : : ; lk ∈ L; δ ∈ L+−1.
For an �L;U�-module M denote by M̄ its base: M̄ = �m ∈ M x δ�m� =

0;∀δ ∈ L+−1�. Recall that M̄ has an L+0 -module structure induced by the
projection to M̄:

l�m̄� = prM̄l�m�:
According to the results of [4], any cochain ψ ∈ Ck+1�L;L�L+−1 can be

reconstructed by its base ψ̄ ∈ Ck+1�L+; L+−1�L
+
0 , i.e., by the cochain

ψ̄:L+ × · · · × L+ → L+−1;

ψ̄�l1; : : : ; lk+1� = prL+−1
ψ�l1; : : : ; lk+1�;

according to the following rule:

ψ�l1; : : : ; lk+1� =
∑

a1; :::; ak+1

Ea1
�l1� · · ·Eak+1

�lk+1�ψ̄�a1; : : : ; ak+1�: (8)

Here a1; : : : ; ak+1 runs through all basic elements of L+0 , if M is an �L;U�-
module with height 1, i.e., L+1 M̄ = 0 and linear maps Ea:L→ U are de-
fined by

Exα∂i�v∂j� = δi; j∂α�v�/α!:

Recall that Ea are defined uniquely by the condition

δEa�l� = Ea��δ; l��; ∀δ ∈ L+−1; l ∈ L:
By Lemma 4.1,

s
r sym
k ∈ Ck+1�L;L�L+−1 :

Moreover,

s
r sym
k ∈ Ck+1�L;L�L+0 :

Note that Ck+1�L+; L+�L+−1 is generated by L+0 -invariants in
Ck+1�L+; L+−1� and Ck+1�L+; L+−1�L

+
0 is generated by polylinear maps

L+i1 × · · · × L
+
ik
→ L+−1;

such that i1 + : : :+ ik+1 = −1.
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By the grading property of right-symmetric algebra A, observe that the
necessary conditions for homogeneous elements a1; : : : ; ak; ak+1 ∈ A+, to
satisfy the condition

s
r sym
k �a1; : : : ; ak; ak+1� ∈ L+−1;

are

�ak+1� = −1; �a1� + · · · + �ak� = 0:

If �ai� = −1, for some i ≤ k, then

s
r sym
k �a1; : : : ; ak; ak+1� = 0;

since ai ∈ Z�A� (see Lemma 4.1). So, s̄r sym
k �a1; : : : ; ak+1� = 0, if the fol-

lowing conditions are not satisfied: a1; : : : ; ak ∈ L+0 ; ak+1 ∈ L+−1. Therefore,
s̄

r sym
k can be considered as a cochain of Ck+1�L+0 ; L+−1�, defined by the rule

s̄
r sym
k �a1; : : : ; ak; ∂r� = ∂r�

∑
σ∈Symk

signσ aσ�1� ◦ · · · ◦ aσ�k��: (9)

According to Lemma 4.1, for any a1; : : : ; ak ∈ L+0 = A+0 = �xi∂j x i; j =
1; : : : ; n�, the right multiplications in aσ�1� ◦ · · · ◦ aσ�k� can be changed by
associative muliplications corresponding to the usual multiplication of ma-
trices. So, the right hand of (9) is equal to sassk �a1; : : : ; ak�.

It remains to take ψ = sr sym
k and use (8) and (9).

Corollary 4.3. If k = 2n, then s2n = 0 is an identity for A.

Proof. By the Amitsur–Levitski theorem,

sassk �xj1∂i1; : : : ; xj2n∂i2n� = 0;

for any i1; j1; : : : ; i2n; j2n = 1; : : : ; n.

For a left polynomial f =∑i λit
i ∈ Rleft

N define πr�f � ∈ Rleft
N as follows:

πr�f � =
∑

i1;:::; ik 6=r
λi1;:::; ik;r ti1 ◦ · · · ◦ tik ◦ tr :

Denote by π̄r :R
left
N → Rleft

N an endomorphism of Rleft
N , which corresponds

to f ∈ Rleft
N a sum of its monomials that do not depend on tr x
π̄r�

∑
i1;:::; ik

λi1;:::; ik ti1 ◦ · · · ◦ tik� =
∑

i1;:::; ik 6=r
λi1;:::; ik ti1 ◦ · · · tik :

Lemma 4.4. Let f ∈ Rleft
2n+1 and f = 0 be an identity for A. Then

(i) πr�f � = 0 and π̄r�f � = 0 are also identities for A.
(ii) πr�f � is a scalar multiple of sr2n.
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In particular, the space of multilinear left polynomials, which are identities
for A, is �2n+ 1�-dimensional and has a basis consisiting of left polynomials
sr2n; r = 1; : : : ; 2n+ 1.

Proof. Notice that ai1 ◦ · · · ◦ aik = 0, if one of the elements ai1; : : : ; aik−1

belongs to Z�A�.
Take ar = zr ∈ Z�A�. Thus for any ai ∈ A, we have

0 = f �a1; : : : ; aN�
⇒ πr�f ��a1; : : : ; aN� + π̄r�f ��a1; : : : ; aN� = 0: (10)

By Corollary 2.4, for any ai ∈ N�Z�A��; i 6= r, ar ∈ Z�A�,

πr�f ��a1; : : : ; aN� = Fr�a1; : : : ; âr; : : : ; aN� ◦ zr;

for some Fr ∈ Rleft
N−l which does not depend on tr . Namely,

Fr�t1; : : : ; t̂r ; : : : ; tN�
=∑k≤2n+1

∑
i1;:::; ik 6=r λi1;:::; ik;r ti1 ◦ · · · ◦ tik ;

if

πr�f ��t1; : : : ; tN� =
∑

k≤2n+1

∑
i1;:::; ik 6=r

λi1;:::; ik;r ti1 ◦ · · · ◦ tik ◦ tr :

Thus, condition (10) can be written in the following way:

Fr�a1; : : : ; âr; : : : ; aN� ◦ zr + π̄r�f ��a1; : : : ; aN� = 0: (11)

The first summand of the left hand of (11) depends linearly on zr and
the second does not depend on zr . Therefore,

Fr�a1; : : : ; âr; : : : ; aN� ◦ zr = 0; (12)

π̄r�f ��a1; : : : ; aN� = 0; (13)

for any zr ∈ Z�A� and a1; : : : ; âr; : : : ; aN ∈ N�Z�A��.



224 askar dzhumadil’ daev

From (13) it follows that π̄r�f � = 0 is an identity for A.
Note that deg πr�f � ≤ 2n+ 1, and deg Fr ≤ 2n. Since the centralizer of

Z�A� coincides with Z�A� (see Lemma 4.1) and Z�A� ⊂ A−1, from (7)
and (12) we obtain that

Fr�a1; : : : ; âj; : : : ; aN� = 0

are identities for N�Z�A��. In particular, they are identities for A+0 ⊂
N�Z�A�� (recall that N�Z�A�� = A+−1 ⊕ A+0 ). We have mentioned that
A+0 = �xi∂j x i; j = 1; : : : ; n� ∼=Matn.

So, Fr = 0, are identities on Matn with no more than 2n variables of
degree at most 2n. By the Amitsur–Levitzki theorem, Fr is a scalar multiple
of standard polynomial in variables 1; : : : ; ĵ; : : : ; 2n+ 1. Therefore

πrf �t1; : : : ; t2n+1� = µr
∑

σ∈Sym1;:::; ĵ;:::; 2n+1

signσ tσ�1� ◦ · · · t̂σ�r� · · · ◦ tσ�2n+1� ◦ tr;

for some µr ∈ K. In particular, πrf is multilinear.
If f is multilinear, then f =∑2n+1

r=1 πrf . Thus, for multilinear f ,

f =
2n+1∑
r=1

πr�f � =
2n+1∑
r=1

µrs
r
2n:

The linear independence of the polynomials sr2n; r = 1; : : : ; 2n + 1, is evi-
dent.

Let f be some left polynomial. We will say that f has l-symmetric vari-
ables ti1; : : : ; til , if

f �t1; : : : ; ti1−1; ti1; ti1+1; : : : ; til−1; til ; til+1; : : :�
= f �t1; : : : ; ti1−1; tiσ�1�; ti1+1; : : : ; til−1; tiσ�l�; til+1; : : :�;

for any permutation σ ∈ Syml. Similarly, f has �l; k�-symmetric variables
ti1; : : : ; til , and tj1; : : : ; tjk , if the sets of indices �i1; : : : ; il� and �j1; : : : ; jk�
have no common elements and

f �: : : ; ti1; : : : ; til ; : : : ; tj1; : : : ; tjk ; : : :�
= f �: : : ; tiα�1� : : : ; tiα�l�; : : : ; tjβ�1�; : : : ; tβ�k�; : : :�;

for any permutations α ∈ Syml and β ∈ Symk. Here we suppose that
i1 < · · · < il and j1 < · · · < jk, but the ordering of the joint set
�i1; : : : il; j1; : : : ; jk� may be mixed. It can be, for example, j1 < i1 <
j2 < i2 < · · ·. So, a more correct writing of the �l; k�-symmetry condition
in this case should be

f �: : : ; fj1; : : : ; ti1; : : : ; tj2; : : : ; ti2; : : :�
= f �: : : ; tjβ�1�; : : : ; tiα�1�; : : : ; tjβ�2�; : : : ; tiα�2�; : : :�:
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Corollary 4.5. �p 6= 2�. Let f be nontrivial multilinear left polynomial
with degree 2n + 1 and let f = 0 be an identity for A. Then f has no 3-
symmetric or �2; 2�-symmetric variables.

Proof. Since sl2n is skew-symmetric for all variables, except the last one,
we have

sl2n�t1; : : : ; t2n+1� = 0;

if ti = tj = tk, for some i; j; k, such that �i − j��i − k��j − k� 6= 0 or
ti = tj; tk = tr , for some �i; j� 6= �k; r�, such that �i− j��k− r� 6= 0. So, any
nontrivial linear combination of sl2n has no 3-symmetric variables. There-
fore, by Lemma 4.4, f has no 3-symmetric variables.

Suppose that f = ∑2n+1
l=1 λls

l
2n has 2-symmetric variables, say ti; tj; i < j.

Then

f �t1; : : : ; ti−1; t; ti+1; : : : ; tj−1; t; tj+1; : : : ; t2n+1�
= λisi2n�t1; : : : ; t̂i; : : : ; tj−1; t; tj+1; : : : ; t2n+1; t�
+λjsj2n�t1; : : : ; ti−1; t; ti+1; : : : ; t̂j; : : : ; t2n+1; t�
= �λis�i; j�2n + λjs�j; i�2n ��t1; : : : ; t2n+1�;

where t is substituted for ti and for tj . Note that

s
�i; j�
2n �t1; : : : ; ti−1; t; ti+1; : : : ; tj−1; t; tj+1; : : : ; t2n+1�
= −�−1�i+js�j; i�2n �t1; : : : ; ti−1; t; ti+1; : : : ; tj−1; t; tj+1; : : : ; t2n+1�:

So,

f �t1; : : : ; ti−1; t; ti+1; : : : ; tj−1; t; tj+1; : : : ; t2n+1�
= �λi − �−1�i+jλj�s�i; j�2n �t1; : : : ; ti−1; t; ti+1; : : : ; tj−1; t; tj+1; : : : ; t2n+1�:

As we mentioned above, si2n has no 3-symmetric variables, so s�i; j�2n has no
2-symmetric variables, except tj; t2n+1. Therefore, f has no �2; 2�-symmetric
variables.

Lemma 4.6. �p 6= 2�. Let f ∈ Rleft
2n+1 of degree 2n+ 1 and let f = 0 be an

identity on W r sym
n . Then

f = ∑
r x degtr f=2

τtr �f � +
∑
i

πi�f �;

where τtr �f � is a linear combination of left polynomials s�l; r�2n ; l 6= r; l; r =
1; : : : ; 2n+ 1, if degtr f = 2 and πi�f � is a scalar multiple of si2n.
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Proof. Prove that

τtr f = 0;

if degtr f > 2.
Suppose that degtr f = lr > 2, for some r. Make tr-linearization for f

with linearization variables tr; 1; : : : ; tr; lr . By Proposition 3.2 the polynomial
R = 1tr; tr; 1; tr; 2

1tr; tr ; tr; 3
· · ·1tr; tr ; tr; lr f has lr-symmetric variables tr; 1; : : : ; tr; lr

and G = 0 is the identity for Wn. If R is multilinear, then by Corollary 4.5
we have R = 0 and by Proposition 3.1 degxr f < lr , a contradiction.

If R is not multilinear, then there exists another variable (say th) such
that degth G = lh > 1. Make xh-linearization of G. Let

H = 1th; th; 1; th; 2
1th; th; th; 3

· · ·1th; th; th; lhG:
Note that H does not change the lr-symmetricity property for the variables
tr; 1; : : : ; tr; lr . In particular, H has a 3-symmetric variable tr; 1; tr; 2; tr; 3. If H
is multilinear, we obtain from Corollary 4.5 that H = 0. By Proposition 3.1
this contradicts the condition degth G = lh > 1.

So, repeating such arguments gives us that def ti f < 3 for all i =
1; : : : ; 2n+ 1.

Prove now that τtr f has no 2-symmetric variable tq; q 6= r, if degtr f = 2,
for some r. Suppose that it is not true, say degtq�τtr f � = lq > 1. Then by
Proposition 3.2

Q = 1tq; tq; 1; tq; 2
1tq; tq; tq; 3

· · ·1tq; tq; tq; lq 1tr ; tr; 1; tr; 2
f

gives identity Q = 0 for A and Q has �2; 2�-symmetric variables tq; 1; tq; 2
and tr; 1; tr; 2. If Q is multilinear, then by Corollary 4.5, Q = 0. If Q is not
multilinear, linearization of nonlinear variables does not change the �2; 2�-
linearilty property for tq; 1; tq; 2 and tr; 1; tr; 2. Repeating this procedure and
using Proposition 3.1 and Corollary 4.5 gives us a contradiction. Thus f has
no �2; 2�-symmetric variables.

Reformulate these results in terms of essential variables. To do this, let us
make two remarks. If f is a left polynomial of degree N and the number
of variables is N , then essential polynomials and multilinear polynomials
are just the same. If f ∈ Rleft

N−1 and deg f = N − 1, then l̂-essentiality of f
is equivalent to the following condition: degtr f = 2, for some r 6= l, and
degti f = 1, for all i 6= l; r, and degtl f = 0.

So, we obtain the following facts:

(i) Any nontrivial monomial of a polynomial f of degree 2n+ 1 has
at least 2n essential variables. If it is not true, say, a nontrivial monomial
T = λit

i of f has no more than 2n − 1 essential variables, then either
degtr T > 2, for some r, or degtr T = 2; degtq T = 2, for some q 6= r. It is
impossible.
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(ii) Any nontrivial monomial of f with 2n + 1 essential variables is
multilinear monomial.

(iii) If T = λit
i is a nontrivial monomial of f with 2n essential vari-

ables, say t1; : : : ; t̂l; : : : ; t2n+1, then T is l̂-essential and, moreover, degtr T =
2, for some r 6= l, and degti T = 1, for all i 6= l; r.

So, we have proved that f is a sum of essential monomials and r̂-essential
monomials, for r = 1; : : : ; 2n+ 1. By the two remarks given above and by
Lemma 4.4, part (i), this means that

f = ∑
r x degtr f=2

τtr �f � +
∑
i

πi�f �:

By Lemma 4.4, part (ii), any πi�f � is a scalar multiple of si2n.
To end the proof of Lemma 4.6 we should prove that τtr �f � is a linear

combination of left polynomials s�l; r�2n ; l 6= r; l; r = 1; : : : ; 2n+ 1, if degtr f =
2, and degtl f = 0.

Note that

τr�f � =
∑
l 6=r
πl�τr�f ��:

Recall that πl�τr�f �� is a sum of monomials of τr�f � that do not depend
on tl. Prove that πl�τr�f �� is a scalar multiple of s�l; r�2n .

Suppose for simplicity of denotions that l < r. Let

f̃l = 1tr; tl; trπl�τr�f ��:

Then f̃l is multilinear. By Lemma 4.4, f̃l is a linear combination of left
polynomials si2n; i = 1; : : : ; 2n+ 1,

f̃l =
2n+1∑
i=1

µis
i
2n; (14)

for some µi ∈ K. In particular,

f̃l�t1; : : : ; tl−1; t; tl+1; : : : ; tr−1; t; tr+1; : : : ; t2n+1�
=∑2n+1

i=1 µis
i
2n�t1; : : : ; tl−1; t; tl+1; : : : ; tr−1; t; t; tr+1; : : : ; t2n+1�:

Notice that

f̃l�t1; : : : ; tr−1; t; t; tr+1; : : : ; t2n+1�
= 2f �t1; : : : ; tl−1; tl+1; : : : ; tr−1; t; tr+1; : : : ; t2n+1�;
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and

si2n�t1; : : : ; tl−1; t; tl+1; : : : ; tr−1; t; tr+1; : : : ; t2n+1� = 0; i 6= l; r;
sl2n�t1; : : : ; tl−1; t; tl+1; : : : ; tr−1; t; tr+1; : : : ; t2n+1�
= s�l; r�2n �t1; : : : ; t̂l; : : : ; tr−1; t; tr+1; t2n+1�;

sr2n�t1; : : : ; tl−1; t; tl+1; : : : ; tr−1; t; tr+1; : : : ; t2n+1�
= �−1�r−1−ls�l; r�2n �t1; : : : ; t̂l; : : : ; tr−1; t; tr+1; t2n+1�:

So, from (14) it follows that

f �t1; : : : ; t̂l; : : : ; tr−1; t; tr+1; : : : ; t2n+1�
= �1/2��µl − �−1�r−lµr�s�l; r�2n �t1; : : : ; t̂l; : : : ; tr−1; t; tr+1; : : : ; t2n+1�:

In other words,

πl�τr�f �� = γl; r s�l; r�2n ;

for γl;r = �1/2��µl − �−1�r−lµr� ∈ K. Lemma 4.6 is proved completely.

Lemma 4.7. If f ∈ Rleft
N , deg f < 2n+ 1, and f = 0 is identity on A, then

f = 0 as a left polynomial.

Proof. If A has nontrivial left polynomial identity of degree d, then it
has a multilinear nontrivial left polynomial identity of degree ≤ d. The
proof of this statement is based on the linearization method and it does
not depend on the associativity of A. Suppose that a nontrivial multilinear
polynomial g ∈ Rleft

d has degree d ≤ 2n and g = 0 is the identity for A.
Then g has a monomial of the form λtdtd−1 : : : t1; λ 6= 0. As in the case
of matrices, if d < 2n+ 1, we can take a1 = ∂1; a2 = x1∂1; a3 = x1∂2; a4 =
x2∂2; : : : ; ad = xm∂m, if d = 2m, and ad = xm−1∂m, if d = 2m− 1. Then

ad ◦ ad−1 ◦ · · · ◦ a1 = ∂m;
and for any permutation σ ∈ Symd, σ 6= id,

aσ�d� ◦ : : : ◦ aσ�1� = 0:

Therefore,

g�a1; : : : ; ad� = λ∂m 6= 0;

a contradiction. Lemma 4.7 is proved.

Let J = �h1; : : : ; hk� be a subset of N with k elements. For f ∈ Rleft
N ,

denote by fJ a sum of monomials of f of the form λi1; :::; ik ti1 ◦ · · · ◦ tik ,
where i1; : : : ; ik ∈ J.
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Lemma 4.8. The space of polynomials f ∈ Rleft
N such that deg f = 2n+ 1

and f = 0 is an identity for A is N
(
N
2n

)
-dimensional. A basis of this space can

be generated by left polynomials s2n; I; r , where I runs through all subsets of N
with 2n elements and r runs through all elements of the set N .

Proof. Since s2n; I; r = s2n; I ′; r ′ , if and only if �I; r� = �I ′; r ′�, the linear
independence of the polynomials s2n; I; r; I ⊆ N ; �I� = 2n; r ∈ N , is evident.

Let f ∈ Rleft
N be a left polynomial of degree 2n + 1 and let f = 0 be

an identity for A. Prove that f is a linear combination of left polynomi-
als s2n; I; r , where I runs all subsets of N with 2n elements and r runs all
elements of N .

Let I be any subset of N . Take aj = 0, if j 6∈ I. Then

f �a1; : : : ; aN� = 0 ⇒ fJ�ai1; : : : ; ai2n+1
� = 0:

Thus, fI = 0 is identity on A.
If N < 2n, then according to Lemma 4.7, f = 0, and Lemma 4.8 is true.

If N = 2n+ 1, then Lemma 4.8 is true by Lemma 4.6.
Suppose that N > 2n+ 1. Since deg f = 2n+ 1, any monomial of f has

no more than 2n+ 1 essential variables. So, any nontrivial monomial of f
will be a part of fI for some subset I of N with 2n + 1 elements. On the
other hand, for any subset J of N with 2n+ 1 elements, by Lemma 4.6 fJ is a
linear combination of left polynomilas sr2n; J , and s�l; r�2n; J , where l; r ∈ J; l 6= r.
So, any nontrivial monomial T of f has 2n or 2n+ 1 essential variables.

Denote by g a sum of nontrivial monomials of f with 2n + 1 essential
variables and by h a sum of nontrivial monomials of f with 2n essential
variables. Then

f = g + h:
Let J be any subset of N with 2n + 1 elements. Then fJ is a part of g.

By Lemma 4.8, fJ is a linear combination of left polynomials sr2n; J , where
r ∈ J. Let J ′ be another subset of N with 2n+ 1 elements and r ′ ∈ J ′. Note
that left polynomials sr2n; J and sr

′
2n; J ′ have common monomials if and only

if J = J ′ and r = r ′. Thus, fJ and fJ ′ have common monomials if and only
if �J; r� = �J ′; r ′�. Therefore, for some µJ; r ∈ K,

g =∑
J

fJ =
∑
J

∑
r∈J
µJ; rs

r
2n; J;

where J runs all subsets of N with 2n+ 1 elements.
The case of h is considered similarly. Let I be any subset of N with 2n

elements. Then fI is a part of the left polynomial h and fI = 0 is an identity
for A. Therefore, by Lemma 4.8, fI is a linear combination of polynomials
s2n; I; r , where r ∈ I. Let I ′ be another subset of N with 2n elements. Notice
that s2n; I; r and s2n; I ′; r ′ have common nontrivial monomials if and only if
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I = I ′ and r = r ′. Therefore, fI and fI ′ have common nontrivial monomials
if and only if fI = fI ′ . So, for some µI;r ∈ K,

h =∑
I

fI =
∑
I

∑
r∈I
µI; rs2n; I; r;

where I runs all subsets of N with 2n elements.
Therefore, if f ∈ Rleft

N , and f = 0 is an identity for A, then f = g + h is
a linear combination of left polnomials s2n; I; r .

Proof of Theorem 3.3.

(i) Corollary 4.3 of Lemma 4.2,
(ii) Lemma 4.7,

(iii) Lemma 4.6 and Lemma 4.8.
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