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An algebra A4 with multiplication 4 x A — A, (a,b) — aob, is called right-
symmetric, if ao(boc)—(aob)oc =ao(cob)—(aoc)ob, for any a,b,c €
A. The multiplication of right-symmetric Witt algebras W, = {ud, : u € U,U =
F[xf, ..., xH) or = H[xy, ..., x,],i=1,...,n}, p=0, or W,(m)={ud, : u €
U, U = 0,(m)}, p > 0, are given by ud, o vd; = vd;(u)d;. An analogue of the
Amitsur-Levitzki theorem for right-symmetric Witt algebras is established. Right-
symmetric Witt algebras of rank n satisfy the standard right-symmetric identity of
degree 2n+1: 3, cqym,, SIAN(0)ay1) © (Ag@) © 0 (Ay(zny © Gzpr) - - -) = 0. The min-
imal degree for left polynomial identities of W™, W+ p =0, is 2n + 1. All
left polynomial identities of right-symmetric Witt algebras of minimal degree follow
from the left standard right-symmetric identity s,>" = 0, if p # 2. © 2000 Academic
Press

1. INTRODUCTION

Let 53" be the standard skew-symmetric associative polynomial in k vari-

ables,
SOty s ) = D0 SION(0) Ly - Lorys
oeSym,

where Sym, is the permutation group in k& elements and sign(o’) is the sign
of a permutation o. According to the Amitsur—Levitzki theorem [1] the
matrix algebra Mat, satisfies the standard polynomial identity of degree
2n,

Z Slgn O'do,(l) O++-0 aa.(zn) = O,

oeSym,,
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where a o b is the usual matrix multiplication. Moreover, Mat,, has no poly-
nomial identity of degree less that 2n. For details on polynomial identities
of associative algebras see for example, [12].

The algebra Wy = {e; : ¢;0¢; = (i + 1)e,y;, i, j € Z} is right-symmetric.
Since its Lie algebra is isomorphic to the Witt algebra W, = {¢; : [¢;, ¢;] =
(j — i)e;,;} we call it a right-symmetric Witt algebra of rank 1 and denote
it by W, ¥™. This algebra satisfies a right-symmetric identity

ao(boc)—(aob)oc=ao(cob)—(aoc)ob
and a left-commutativity identity
ao(boc)y=bo(aoc). (¢))

Such algebras are called Novikov [9-11].

There is a generalization of the Witt algebra to the many variables case.
Let U be an associative commutative algebra with a set of commuting
derivations @ = {4, : i = 1,...,n}. For any u € U, an endomorphism
ud;: U — U, such that (ud;)(v) = ud;(v), is a derivation of U. Denote by
U< a space of derivations >}, u;d;. Endow this space by multiplication

We obtain a right-symmetric algebra U. This algebra is called a right-
symmetric Witt algebra generated by U and .

In our paper, U is #[xy,...,x,], or Laurent polynomial algebra
H[xit, ..., x5, or a divided power algebra O,(m) = {x® : x*xf =
(“*P)xa+P}, if the characteristic of 5 is p > 0. As a Lie algebra the
Witt algebra of rank » is defined as a Lie algebra of derivations of U.
The multiplication ud; o vd; = vd;(u)d; satisfies the right-symmetry iden-
tity. Obtained right-symmetric Witt algebras of rank n are denoted by
W, ™ or W,""™ or W,(m)'¥™, depending on U = #[xi,..., x¥1], or
H[x1,...,x,], or O,(m). It is easy to observe that the right-symmetric Witt
algebras of rank n do not satisfy the left-commutativity identity if n > 1.

We are interested in the analogues of the left-symmetric identities for
the case of many variables. We suggest two ways to solve this problem.

In the first way we endow the vector space of the Witt algebra with two
multiplications: the multiplication (a, b) — a o b, mentioned above, and
the second multiplication defined by ud; * vd; := d,(u)vd;. We obtain an
algebra with the following identities:

ao(boc)—(aob)oc—ao(cob)+(aoc)ob=0,

ax(bxc)—bx(axc)=0, 2
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ao(bxc)—bx(aoc)=0,
(axb—bxa—aob+boa)xc=0,
(aob—boa)xc+ax(cob)—(a*xc)ob—bx(coa)+(bxc)oa=0.

Note that (2), for the multiplication x*, is similar to the identity (1) for
the multiplication o. In the case of n = 1, these multiplications coincide
and all identities are reduced to two: right-symmetric identity and Novikov
identity. So, an algebra A4 with multiplications o and % can be considered
as a Novikov algebra in the general case.

The second way concerns identities of right-symmetric Witt algebras. In
this way we save right-symmetric multiplication (a,b) +— a o b, and try
to construct an identity for its left multiplication operators. For a € A,
denote by r, and [/, operators of right and left multiplications on A4 : br, =
boa, bl, = aob (arguments are on the left side). In terms of right and
left multiplication operators the right-symmetry identity is equivalent to the
following conditions:

[”a”’b]:”[a,b]’ [ra,lb]zlalb—lboa, Va,bEA.
Lets,”™ be the following skew-symmetric non-associative left polynomial
in k + 1 variables:
rsym

S (ts s i ipn) = D SION(0) Lyay © (Fo(2) © -+ © (i © Begn) -

oeSym,

Call it the standard polynomial of degree k + 1 (more exact names like
“standard left polynomial for right-symmetric algebras” or “standard right-
symmetric left polynomial” are too long and not convenient).

Note that s, is skew-symmetric in the first k variables 7, ..., t,. Let
k=5,
ity e eos i) =8 (s eves By ooy s 1), 0<r<k,
Sty ) =S bt t), L#E T
If ;™ = 0 is identity for right-symmetric algebra A, then 5% =0, s\"” =0,

are also identities for A.

Our main result is the following. In the case of right-symmetric Witt alge-
bras of any rank n for left multiplication operators the standard associative
polynomial identity of degree 2n holds,

> signol, ol =0,

o€ SymZn
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or in terms of the multiplication o, the following left polynomial identity of
degree 2n + 1 is valid:

Y sign T A2y © (Ag(an-1) © 0 (Ag2) © (agy © ag))---) = 0.
oeSym,,

We prove that in the space of left polynomial identities the degree 2n + 1
for right-symmetric Witt algebras of rank n is minimal. We also prove
that any left polynomial identity of right-symmetric Witt algebras of rank
n of minimal degree follows from standard polynomial, if p # 2. More
exactly, the space of polynomial identities of minimal degree of right-
symmetric Witt algebras W,, p = 0, (W,(m), p > 2) with N variables is
N(}))-dimensional. If N = 2n + 1, this space is (2n + 1)>—dimensional and
has a basis consisisting of polynomials sén, sé’n’, Lr=212,....2n+1,1#r.

The main tool used here is a functor E constructed in [4]. It allows one
to extend module structures, invariants, and identities of matrix algebras to
module structures, invariants, and identities of Witt algebras. It should be
mentioned that Witt algebras are considered not only in the Lie sense, but
also in sense of right-symmetric algebras. In particular, the Novikov identity
(1) that coincides with the identity s,”" (ay, a,, a3) = 0 is an extension
of the Amitsur-Levitski identity for Mat;; i.e., it is a prolongation of the
commutativity condition of the main field. The generalized Novikov identity
is an extension of the Amitsur—Levitski identity from matrix algebras to the
right-symmetric Witt algebras (see Lemma 4.2). So, we can consider right-
symmetric algebras that satisfy the standard right-symmetric identity,

Y SN0 a1y © g2y © - Ayam) © oni1 =0, 3
oeSym2n
as a generalization of Novikov algebras. This class of algebras includes Witt
algebras in the case of many variables.

The identity (1) is true for any associative commutative algebra U and
for a set & with one derivation ¢;. The identity (3) holds for any associative
commutative algebra U with a set of n» commuting derivations & = {d,,i =
1,...,n}. Moreover, it holds for some right-symmetric deformations of
Witt algebras.

Regarding deformations of right-symmetric algebras and the description
of local deformations of 4 = W, ™™, W,”"¥™ if p =0, or W,(m), if p > 0
(see [6, 7]), as an example let us give some right-symmetric deformations
of A=W, ={a=ud:ueH[x*]}.

The space of local deformations of A is four-dimensional and generated
by classes of the following right-symmetric 2-cocycles:

Py (ud, vo) = x tuva,
P (ud, vo) = xo(u)vd,
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zp3(u¢9, vd) = (u — xd(u))d(v)d,
Py (ud, vd) = a(u)d(v)d.

If¥, = Zizl &, is a 4-parametrical local deformation of A, is it possible
to construct prolongations W, = > ;_;€'y', where i = (iy, iy, i3, iy), |i| =
iy + iy + i3 + i,? In other words, is it possible to find ¢' e Crzsym(A, A)
such that a new multiplication,

ao,b=aob+) ¥,
l

will be a right-symmetric multiplication over a field 7 ((¢))? The answer is:
V¥, can be prolongated to a global deformation if and only if e1&4 + &,65 =
0. We give prolongation formulas for some special cases.

The local deformation &;¢* + &,4? of W, has a trivial prolongation,

(ud, vd) > I(u)v + e1x tuv + e,x a(u)v,

and is a right-symmetric multiplication. This algebra was obtained by

Osborn [11]. Notice that cocycles 2, * do not satisfy left-commutativity

identity. They are not Novikov cocycles [2]. Each of these cocycles has the

following prolongations:

(a, b) — d(a)b + s3[xd, a](z ey(—=1)x'd" /{(e3+ 1) - - (ieg + 1)})&(19),
4

L

(a, b) — d(a) Z g4d'(b).

In the case of (4) we should change expressions like (ie; + 1)~! to the
formal series 1 — ieg + i%e5 — i°¢3 + ---. Then we obtain a formal power
series

(a,b) +— d(a)b+ &;3[xd, ald(b)
—&3[xd, a)(xd? + x23°)(b)
+&3[xd, al(xd? + 3x25° + x3*)(b)
—e3[xd, a](xd? + 7x23° + 6x39* + x*3°)(b)
+&3[xd, a](xd? + 63x25° + 25x35* + 10x*5°
+ x5 (b) + - --.

This is one of the prolongations of the local deformation &;[xd, al]d(b). It
would be interesting to construct prolongation formulas for a linear combi-
nation of cocycles and find polynomial identities of the obtained algebras.
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It is also interesting to find right polynomial identities of right-symmetric
algebras. Right multiplication operators satisfy Lie algebraic conditions and
in this case one can expect Lie algebraic difficulties (see [13, 14]). Let us
mention that an identity of degree 5 for the Lie algebra ;" is true also for
right multiplication operators:

> sign O Ty TayeTan Tane = 0
oeSym,
Moreover, for right-symmetric Witt algebra U%, & = {d}, the following
right polynomial identity of degree 3 holds:

Y. SigN 0 (ay) 0 Ag)) 0 dg(s) = 0.
oeSym,
This identity follows from the Novikov identity (1).
For a right-symmetric algebra U%, where & = {4, d,}, the following
right polynomial identity of degree 7 is true:

Y. sign T((((ag(1) © Ag(2)) © Ag(3)) © Ag(a)) © Ag(5)) © Ag(s)) © Ay = 0.
oeSym;
We have checked it in Mathematica, which takes about 2 hours. Via Maple
we have checked that the minimal degree of a right polynomial identity for
D = {dq, d5, d3} is 14. | am deeply grateful to C. Lofwall who wrote me
a program in Mathematica. It allows me to prove that the minimal right
polynomial identity for & = {d,, d,, d3, d4} has degree 23.

Conjecture. The minimal degree of polynomial identities for right mul-
tiplications of right-symmetric Witt algebra W, n > 1, is n? 4+ 2n — 1.

We do not know if is it possible to obtain minimal right polynomial iden-
tity from the left standard identity. As we mentioned above, the answer to
this question in the case of n =1 is positive.

Polynomials corresponding to pre-minimal identities also have interesting
properties. For example, the standard polynomial for right multiplication
operators,

Sk(ala cee ak) = Z sign(o-) ra(r(l) e rﬂu(k)’
oeSym,

for k = n?> +2n — 2 induces k-ary operation in a space of deriva-
tions. For any derivations Dy, ..., D,..,,_, in n variables the operator
Sp24on_o(D1, ..., D2 i0,_5) is also a derivation. In particular, a subspace
of first order differential operators {>7_; u;d; : i = 1,...,n} of an alge-
bra of differential operators has (n? + 2n — 2)-ary operation Sy on_p HeETE
uq, ..., u, belong to any associative commutative algebra U with commut-
ing derivations 4., ..., d,. It is well known that the space of derivations in
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general is not close under the composition operation (D4, D,) — D;D,,
but it is close under the commutator,

SZ(D17 Dz) = D1D2 - D2Dl = D2 @) Dl — Dl e} D2 e Der U,

for any D,, D, € DerU. So, s,,",, , can be considered as a nontrivial
generalized commutator on the space of first order differential operators
in n variables. In this sense a minimal right polynomial identity for right-
symmetric algebras can be interpretered as a Jacobi identity for generalized
commutators. The number n? + 2n — 2 here cannot be improved: s; = 0 is
an identity for Witt algebras, if k > n?> + 2n — 2, and a differential operator
$¢(Dq, ..., D;) can have an order of more than 1 for some differential
operators of first order Dy, ..., Dy, if k < n? +2n — 2.

These statements require long computer calculations. For example, for
constructing the generalized commutator s;5 for & = {d,, d,, d3} we spent
about half a year. | am deeply grateful to the Mittag-Leffler Institut, and to
Proffessor J. Mickelsson and K. O. Widman, the organizers of the program
“Topology and geometry of quantum fields,” for the beautiful possibility to
do computer calculations.

A complete text about right polynomial identities and generalized com-
mutators will be published elsewhere.

2. RIGHT-SYMMETRIC ALGEBRAS

Let A be an algebra with multiplication A x A — A, (a,b) — aob. Let
(a,b,c) =ao(boc)—(aob)oc be an associator of elements a, b, c € A.
Associative algebras are defined by condition (a, b, c) =0, for any a, b, c €
A. Right-symmetric algebras are defined by identity

(a,b,c)=(a,cDb),
i.e., by identity
ao(boc)—(aob)oc=ao(cob)—(aoc)ob.
The left-symmetric identity is
(a,b,c) = (b, a,c).

There is a one-to-one correspondence between right-symmetric and left-
symmetric algebras. Namely, if (a, b) — a o b is right(left)-symmetric, then
a new multiplication, (a, b) +— b o a, is left(right)-symmetric. In our pa-
per left-symmetric algebras are not considered. Right-symmetric algebras
are sometimes called Vinber or Vinberg—Kozsul algebras [15, 8]. Right-
symmetric algebras are Lie-admissible, i.e., under the commutator [a, b] =
aob — boa,we obtain a Lie algebra.
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Any associative algebra is right-symmetric. In a such cases, we will use
notations like 4, if we consider A4 as an associative algebra, and A™™ if
we consider A4 as a right-symmetric algebra. Similarly, for a right-symmetric
algebra A the notation A™™ will mean that we use only right-symmetric
structure on A, and A" stands for a Lie algebra structure under the com-
mutator (a, b) — [a, b].

In terms of operators of right multiplication r, and left multiplication [,
of the algebra A4,

ar,:=aob, aly,:=boa,
right-symmetry identities are equivalent to the following conditions:
[ra> 5] — Ma, 51 = O,
[ra, 1] = Ll + 1oy = 0.

Let A, ={a,:ae€ A} and A, ={a;: a € A} be two copies of A, and let
st = A, ® A; be their direct sum. Let T(s{) = X @A DA QA D --- be the
tensor algebra of 4. A universal enveloping algebra of A, denoted by U(A),
is defined as a factor-algebra of T(A, & A4;) over an ideal generated by
la,, b,]—[a, b],,[a,, b;] — a;b; + (b o a),. Denote elements of U(A) corre-
sponding to a,, a; by r,, 1,.

A vector space M with two actions of A,

(M, A) > M, (m, a) — ma
(left action) and
(A, M) —> M, (a, m) — am
(right action), is called a module over a right-symmetric algebra A, if
(ma)b — m(a ob) = (mb)a —m(b o a),
(am)b — a(mb) = (a o b)m — a(bm),

for any a, b, c € A, and m € M. Notice that the right action induces a right
Lie-module structure on M,

mla, b] = (ma)b — (mb)a, a,be A, meM.

A module with trivial left action, am = 0, for any a € A, m € M, is called
right antisymmetric.
Let B be a subalgebra of A. Let

Z'5s(By={a e A:(a,by,by) =0, ¥by, b, € B},
ZZHSS(B) = {{,l c A . (bl’ bz, a) - 07 Vbl’ b2 € B}’
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be left and right associative centralizers of B in A. Let
NL*S(B)={a € A: (a, by, b,) € B,Vb,, b, € B},
N (B)={ae A:(by,b,,a)e B,Vby, b, € B},
be the left and right normalizers of B in A. It is clear that
Z(B) € N (B),
Z{(B) € N (B).
Let
Z*"(By={ae A:aob=0, Vb e B},
rlght(B) {ae€ A:boa=0, Vb € B},
be left and right centralizers of B in A and
N (By={ae A:aobe B, Vb e B},
N (B)y={aec A:boaecB, Vbe B},
be left and right normalizers of B in A. We have
Z5(B) < 2 (B),
2By c zras(B),
Neft(B) c Nioss(B),
N (B) € N7 (B).

For the left cases and if 4 = B we reduce these notations: Z(A) =
Z50(4), N(A) = N§"(4), Z10(4) = 23 (4), N () = N (),
Zl‘ass(A) ZIaSS(A) Nl.ass(A) — NluSS(A) Zrass(A) — Zl’/;laSS(A),
Nr.aSS(A) — raSS(A)

We call Z(A) and Z""(A) the left and right centers of A. We also call
ZMs5(A) and Z"%$(A) left and right associative centers of A.

Left (right) associative centers are closed under multiplication o. To see
this let us consider for simplicity the case of left associative centers. Suppose
that X, Y e Z"%(A). Then according to the right-symmetric identity

(XoY)o(aob) = Xo(Yo(aob))=Xo((Yoa)ob)
(Xo(Yoa))ob=((XoY)oa)ob.

S0, X oY € Z!'*5(A), and Z'*(A) is a subalgebra of A.
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Notice that Z(A) and N(Z(A)) are also subalgebras of A4:
(z102z)oa=2z10(zy0a) — (z1,a,2,) =0,
((npomny)oz)oa=(n,o(nyoz))oa—(ny,z,n)oa=0,

for any a € A,zy,2, € Z(A),ny,n, € N(Z(A)). The same is true for
Zright(A) and Nright(Zright(A)).

ProposITION 2.1, If z € Z(A), then r, is a derivation of A.

Proof.  Since zob =0, we have a o (z o b) = 0. According to the right-
symmetric identity

(aob)oz=ao(boz)+(aoz)ob,
foranya,bec 4. 1
PROPOSITION 2.2. Forany z € Z(A),a € N(Z(A)), and for any b € A,
ao(boz)=(aob)oz.

Proof. Let z € Z(A). Then zob =0, and ao(zob) = 0. Let a €
N(Z(A)). Then (aoz)ob =0. So,

ao(boz)—(aob)oz=ao(zob)—(aoz)ob=0.

COROLLARY 2.3. For N = N(Z(A)),
Zleft(A) C Zr.asS(N).
Proof. Evident.

COROLLARY 2.4. For any ay,...,a,_1 € N(Z(A)), and a, € A, z €
Z(A), the following relation holds:

a,o0ay,0---a, j0a,0z=(a,0d,0---a,_104a,)oZz.

Proof.  For n = 2, the statement follows from Proposition 2.2. Suppose
that this is also true for n — 1. Then by Proposition 2.2

ay0(ay0---(a,10(a,02)--)
=a;o{(ayo---(a,_10a,)--)oz}

= {ay0 (a0 (a, 104,)--)}oz.
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PROPOSITION 2.5. Let U be a right antisymmetric A-module and let
AUU — A
be a pairing of A-modules,
ao(bUu)=(aob)Uu,
(aUu)ob=(aob)Uu+ao(uob), ®)

forany a,b € A,u € U (about cup-products see [6]). Suppose that any ele-
ment of A can be presented by a cup-product as z U u, for some u € U and
z € Z(A). Then for any a4, ...,a, 1 € N(Z(A)), and a, € A,

a,o0a,0---a, 0a,0oa=(a,o0a,o0---a, 104a,)od.
Proof. Let a=zUu. Then by (5), and Corollary 2.4,
ajo(azo---(a,10(a,0a)):-)
=a;o{(azo---(a,10((a,0z)Vu))}
=ayo(ao---(a,10(a,0z))---)Uu
—{ay0 (a0 (ay10a,)-)boz)Uu
={ayo0(az0---(a,.10a,) )} o(zVu)

={a;o(azo---(a,10a,) )} oa.

PROPOSITION 2.6.  Z'*5(A) € N(Z(A)).
Proof. Let a € Z"*(A). Then for any z € Z(A), and any b € A,

(aoz)ob=ao(zob)—(a,b,z)=0.

ExampPLE 1. Any associative algebra is right-symmetric. As associative
algebras the matrix algebra Mat,, give us examples of right-symmetric alge-
bras.

ExampLE 2. Let U be an associative algebra with commuting deriva-
tions ¥ = {4;,i = 1,..., n}. Then an algebra of derivations UD = {ud, :
u € U, d; € @} with multiplication ud; o vd; = vd;(u)d; is right-symmetric.
Since the Lie algebras corresponding to U are Witt algebras, i.e.,

[ud;, vd;] = —ud; o vd; + vd; o ud; = uﬂi(v)(?j — v&j(u)(?i,

we call such algebras right-symmetric Witt algebras.
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Let I', be a set of n-typles a« = (a4, ..., «,), Where «; are integers. Let
I be its subset consisting of such « that a; > 0,i =1,..., n. In the case
of p = char % > 0, we consider a subset I'y(m) ={a:0 < o; < p™i,i =
1,...,n}, wherem=(my,...,m,),m;>0,m; €Z,i=1,...,n

For char # = 0 suppose that

k
U=%A[xf . ox ) ={x*=]]x" :ael,}
i=1

is an algebra of Laurent polynomials and
Ut =FH[xy,...,x,]={x*:a e},

its subalgebra of polynomials.
Let

0,(m) = {x® =[x :aeTy(m),i=1,...,n}

be a divided power algebra if char # = p > 0. Recall that O,(m) is p™-
dimensional and the muliplication is given by

@B (“ + B>x(a+3),
o

where m = Y, m;, and

(M) ()

Lete; =(0,...,1,...,0). Define 4; as a derivation of U,
1

i (x%) = a;x® ¢, p=0,
&i(x(“)) = xle=e), p>0.

Denote the right-symmetric algebras U, UT% for U = #[x*1, ..., xF]
as W, and W,"™™. Similarly, denote the right-symmetric algebra
0,(M) as W,(m) M,

As in the case of Lie algebras, 4 = W, ™™ has a grading

Az@kAk’ AkOAI € Ak+l’ k,lEZ,

n
Ay = {x%0; 1 |x*| = |a| = Y a; = k + 1}
i=1

This grading induces gradings on W,""¥™ and W, ™ (m).



IDENTITIES FOR RIGHT-SYMMETRIC ALGEBRAS 213

ExXAMPLE 3. Let 4 be an associative algebra, C*(A4, A) = ®,C*(A, A),
and C¥(A,A) ={y: Ax---x A— A} be a space of polylinear maps
with k-arguments, if k > 0, C%(A4, A) = A, and C¥(A4, A) =0, if k < 0.
Endow C*(A, A) by a “shuffle product” multiplication

C*(A, A) x C*(A, A) - C* (4, A).
Corresponding to € Ck*1(A4, A), ¢ € C'*1(A, A), their shuffle product
YodeCH+L(A, A), k,1>0is given by
¢ o d)(ab s ak+l+1)

=2 U(d(agys -5 Ao(kt1))> Ao(k42)> - - - 5 Qo(kti+1))s
where the summation is over permutations o € Sym, ;. ,, such that o (1) <
c<ok+1), o(k+2)<---<o(k+1+1).
Let g, € Ck+Y(A4, A), k > 0, be a standard skew-symmetric polynomial
with shifted index: &, = si%;.
Then [3]

g0 &y = (i + Ve
Eok41 © €141 = 0,

€2k © €2141 = E2k421+1>

for any k,1,i > 0.
Therefore, the algebra of standard polynomials under the shuffle product
is isomorphic to the right-symmetric algebra A, @& A;, such that

Ay ={e; : i >0}, Ago Ay C Ay,
ejoe;=(i+1/2)e;;, 0<1i,j,
Ay ={x":j >0}, Ao A =0,
Ago A; C Ay, Ajo0AyC Ay,
xtl o ¥t =0, e; o X/t = (1/2)x" L, i,j>0.

This isomorphism is given by

+1
= &2j4+15

e€; — 821‘/2, x!
where i,j=0,1,2,....
This algebra has also a multiplication U:C*(A4, A) ® C*(A4, A) —

C*(A, A), which called a cup-product,
(/j U ¢(a1’ ) ak+l)
= > P(gys - s Qo) P(Aokirys - > Aohin))-

geSym ., o(l)<--<a(k),
o(k+1l)<--<a(k+l)
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Then
g Ve = ¢&ij,

for any i, j > 0. In particular, a subalgebra generated by ¢;, is a commuta-
tive associative algebra under a cup-product. These multiplications satisfy
the conditions

(SiUsj)osk = (—1)k(j_l)(8i08k)uaj+8iU(8j08k),
(aub)Uc=aU(bUc),
aUb=>bUa,

where b € C¥(A, A), c € C/(A, A). So, an algebra of standard polynomials
has the structure of a Poissson—Novikov algebras in the sense of [5].

3. RIGHT-SYMMETRIC IDENTITIES

Right-symmetric algebras are not associative. They are not even power-
associative. In defining polynomials for right-symmetric algebras one should
fix the positions of the brackets. Further, expressions like t,ot,0---0t;_4 0
t, will mean a right normed element # o (f, o (--- o (t,_1 0 #;)---)). For
any finite sequence of integers i = (i1, iy, ..., i), with i; =1,..., N, and
I=1,...,k, _Where k is any integer, set ' = tio...ol. Elements of the
form T = A\;¢', where A; € &, are called (left) monomials with N variables
and f; is called as the head of the monomial T. If A; = 0, then the monomial
' is called trivial. If we would like to pay attention to monomials with
A; # 0, then we call A;#' a nontrivial monomial. The sum of monomials is
called a (left) polynomial. For a polynomial

ZA: e RRM,

we will say that f has a monomial \t', if A; # 0. If a (left) polynomial g is
a sum of some monomials of f, then g is called a part of f.

A space of (left) polynomials in variables ¢#,...,ty is denoted
by Rz, ..., ty] or simply RE". Suppose that f e R%", ie, f =

fty, ...y ty) and feR In such cases we will say that f depends on
N varlables

For a monomial #, where i = (iy, ..., i), we denote by deg, (') the
number of indices i, ..., i, that are equal to . This number is called the

t,-degree of £, If deg, t' > 0, and A; # 0, then ¢, is said to be an essential
variable for A;#' and A;¢' is then called r-essential. Let R be a subset of
the set {1,...,N}. A nontr|V|aI monomial A;¢' is called R-essential, if it is
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r-essential, for any r € R. A left polynomial f € R'S" is called R-essential if
all its nontrivial monomials are R-essential. If R = {1,..., N}, then an R-
essential polynomial is called essential. If R={1,...,r—1,r+1,...,N},
then an R-essential polynomial is called 7-essential.

The maximal t.-degree of monomials of f is called the t.-degree of f
and is denoted by deg, f. Let 7,.(f) be a sum of monomials with ¢,-degree
deg, f. Call it the ¢ -leading part of f.

The degree of the nontrivial monomial A;z; o--- o is by definition k

deg ' = |i| = k.

The maximal degree of the nontrivial monomials of f is called the degree
of the polynomial f,

deg f = max{|i| : A; # 0}.
Let
Atr,x’y:Rl;\e/'ﬂ[tl, ceey tN] e Rll\e/-fil[tl, ceey tl’fl’ X, y, tr+l’ ey tN]
be a linearization operator defined by the rule
Al‘,,x,yf(‘ HA] tr—l’ X, Y tr+17 o )
zf("'atr—l’x+y7tr+1’"')_f(~~'7tr—l’xytr+1a---)
- f( e b Y Lry1s -+ )
Observe that
At,,)c,yf = 07

if and only if f is linear in the rth variable or f does not depend on ¢, i.e.,
deg, f < 1. So, we have the following proposition.

ProposiTION 3.1.  If
Atr,tnl,t,lz T At,, l,,tn,_lAt,,t,, t,,_If =0,
then
() =0,
in other words

deg, f<L.



216 ASKAR DZHUMADIL’ DAEV

PROPOSITION 3.2. Let f € R¥[¢,, ..., ty], and let

§= At}"tr,lvtnzAtr’ btz 0T Atr"trvtnl‘f:

Then

g( ey trfl’ tr,l’ . tr,l’ tr+l, .. ) = g( ey trfl’ tr,o'(l)’ ey tr,a'(l)s tr+l, ..

for any o € Sym;.

s

Proof. We will argue by induction on [. If [ =1, the statement is trivial.

Suppose that for / — 1 Proposition 3.2 is true and prove it for /. Let

h= Atr’tr’ g Atr) tratr,l‘ﬁ
Then

gZAt,,t t

1 b2
For i = 2, we have
(G ST AP AP A NN AP AN |
=X O ST AUIE S AP AP TN AVA AT
—h(. st b tgs s s by )
S R SEET AP AP SRS AT PR |
=h(...,tr g o+t tgs ety by,
—h(.. ot botgs et by, )
—h(t b tgs s b by )
=gttty gy by, ).

So, if / = 2, the statement is established.

y

Consider the case / > 2. By the inductive hypothesis, g is symmetric in
the variables ¢, 5, ..., ;. In order to simplify notations, set x = ¢, 1,y =

t, 2, 4, 3, and instead of expressions like
g( LR trfl7 tr,17 tr,27 Z‘r,fa‘> et tr,l? Z‘rJr15 N ')’
write more simply G(x, y, z). It is enough to prove that
[ RN SUPYY APIY AP AP AR AT |

S { G ST SETS AP AP TN A0S AT X

or in our short notations,

G(xa Y5 Z) = G(xa Z, y)

(6)
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Let
q= Atr,t,,tM T At,,t,,tn,f’
if />3, and
q=1
if /=3. Then
h = At,,,z,,tnSCI-
We have

G(x,y,z)=H(x+y,z)—H(x,z)— H(y, z)
=0(x+y+2)-0(x+y)—0(2) - Qx + 2) + O(x) + O(2)

—0(y+2)+0(y) + Q(2)
=0(x+y+2)-Q(x+y)-Q(x+2) -0y +2)
+0(x) + 0(y) + Q(2)
and
G(x,z,y) =H(x+2zy) - H(x,y) - H(z,y)
=0(x+z+y)-0(x+2)—0(y)
—0(x +y)+ O(x) + O(y)
—0(z+y) + Q(2) + O(y)
=Q0(x+y+2)-0(x+2)-Q(x+y)-0(y+2)
+0(x) + O(y) + Q(2).
io, (6) is established and therefore Proposition 3.2 is proved completely.
Let f e R¥. We will say that f = 0 is a right-symmetric (left) identity for
the right-symmetric algebra 4, if f(ay,...,ay) =0, forany a;,...,ay €
A. Let p = (iy,...,iy), where iy, ..., iy = 1,..., N (indexes i, and i

may be equal for some k,!). Let f? be a polynomial obtained from f by
substitution #, — ; ,k=1,..., N,

[Pty ty) = f(ti, - 1)

Notice that f? is a left polynomial and if f = 0 is a polynomial identity
on A, then f* =0 is also a left polynomial identity on A. In particular, if
si¥™ = 0 iis a right-symmetric left identity for A, then s, =0 and s\""” =0

are also right-symmetric left identities, where [,r =1,..., N, #r.
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Suppose that A is a graded right-symmetric algebra,
A=®,;A4;, AjoA; C Ay

Elements of A; are called homogeneous elements of weight i. The notation
la| = i will mean that a is a homogeneous element of 4 and a € A,.
The element obtained from ¢' by substituting ¢, := a; we denote by a'.
For a graded right-symmetric algebra 4 and for any monomial ', where
i =(iy, ..., i), itis evident that

a'€ A, |ila, |- Q)

In our paper we deal only with left polynomial identities.
The following left polynomial of R, is called the left standard polyno-
mial of degree k + 1 for right-symetric algebras:

rsym .
(tl7"‘7tk+l) = Z Slgn Ut(r(l)o"'ot(r(k)Otk+l‘
oeSym,
Note that it can be considered as an associative standard polynomial of
degree k for left multiplications in the universal enveloping algebra of right-
symmetric algebras [6]. If

ass H
S (ltl’ e ltk) = Z sign O-l[o-(l) e llrr(k)’
oeSym,,
then

rsym
(tl’ cees I tk+1) = (tk+1)slzss(lt17 e ltk)'

Denote by & the set of indices {1,...,N}. Let I = {hy,..., b} C

. If I has 2n + 1 elements, one can consider standard left polynomials

S 15 o1 € R, having variables, indexed by elements of 1,

r N . ~
Son 1 (ngs oo b)) = D SOy ool oty oty
oeSym,,
(l r) _ . ~
Zn I(thl’ ey th2n+1) = Z Slgn(Ttha(l) O”.thl.'.Otha(ZnH) Oth,'
UGSymZn

If I has 2n elements and r € W, then one can consider the polynomial
Son,1,, IN variables ¢, , ..., 4, .t defined as follows:

S 1 (tps oty s 1) = D signoty, ooty of.
oeSym,,
If r ¢ 1, and J = I U {r}, then s,, ,, is a left polynomial with 2n + 1
variables indexed by a set J = I U {r} and

o
Son, Ir = Son,J-
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If r € I, then s,, ; , is a left polynomial in 2n variables indexed by I and
deg, 5,1, =2, and

l’ "
SZn, Lr = sgn,’J)’
forany /¢ I, and J =1 U{l}.
Note that the left polynomials s,, ; ,, for 2n elements subset / C ./ and
r € N are defined uniquely by the pair (, r). If I' = {i}, ..., i, } is another
subset of the set & with 2n elements, ' € W, then

r
Som 1 (tis o5ty 5 10) =0,

for (I, r) £ ', 7).
The following is our main result.

THEOREM 3.3. Let A be one of the following right-symmetric algebras
Wa ¥ (p = 0), Wi (p = 0), WP (m)(p > 0).

() A satisfies the right-symmetric standard identity of degree 2n + 1,

Y sign T U1y O Ag(2) O Ag(2n) © dop1 = 0,
ageSym2n

. . !
forany ay, ..., a,, ., € A. In particular, the left polynomials sén, sg,; r), lLr=

1,...,2n+ 1,1 # r, also give right-symmetric identities for A.

(i) A has no nontrivial left polynomial identity of degree less than
2n+ 1.

(iii) (p # 2). The space of minimal left polynomial identities with
N variables is N (é\; )—dimensional and left polynomials s,, | ,, where I runs
through all subspaces of N with 2n elements and r € N, generate a basis.
In particular, the space of minimal polynomial identities of 2n + 1 vari-
ables is (2n + 1)?>-dimensional and has a basis consisting of left polynomials
sén,sgl,;r),l,rz 1,....2n+ 1,1 #r.

Proof of theorem 3.3 will be given in Section 4.

EXAMPLE. ersym has no polynomial identity of degree 2.r SAmny left poly-
nomial f of degree 3 such that f = 0 is the identity on W, Y is a linear
combination of the following nine left polynomials:

S%(tb lyyl3) =ho(lzol)—tz0(fot),
s5(ty, by, t3) =ty o (0 1) — 130 (11 0 1),
s3(ty, by, 1) =t o (lyo 1) — ty o (fy 0 13),

1,2
Sg )(tla lhyl3) =tho(lzol) —1tzo(fhot),
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857ty 1y, 1) = 0 (0 1) — 30 (1 0 1),
sVt by, 1) =t o (0 1)) — 0 (4 0 1y),
s (b, by, t3) = 1 0 (ty0 15) — tz 0 (1 0 1),
sSEV (b, ty, t) = ho(hot) —to(tot),

3,2
Sg )(tl, Lyly) =t o(lol)—to(lob).

4. IDENTITIES OF RIGHT-SYMMETRIC WITT ALGEBRAS

If otherwise is not stated, in this section A will denote W, ¥™, w, "™

rsym —+rsym '

or W, "™ (m), p > 0 and A* will denote W," ™. Let U = #[x}%, ..., xI1],
FH[xq, ..., x,], 0r O,(m), if A=W,, W}, or W,(m). Let

Aflz{o?i:izl,...,n},
Ay ={x;0;:1,j,=1,...,n}
Lemma 4.1 [6].
Z(A)= A",
N(Z(A) = A", ® A].

The subalgebra Aa” is associative and isomorphic to Mat,. In particular,
N(Z(A)) has a subalgebra isomorphic to Mat,,.

LEMMA 4.2. For any wcd;, ..., ud; ud, € A, the following formula
holds:

s(Uadys - oo wid; , ud,)
=20 =19 (ug) - 9 (w )ud, (s (x5,0,5 -, X5,;,))-

Proof. Let L be W, as a Lie algebra. L acts on associative commutative
algebra U as a derivation algebra:

I(uv) = l(u)v + ul(v), VieL,u,ve U

Morover, the adjoint L-module L has an additional structure of a module
over U,

u (vd;) = uvd;,
such that

I(uly) = l(w)ly + I(uly), Vil e L,ueU.
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In the terminology of [4], L is an (L, U)-module with base Lfl.
Let CX(L,L) be the space of polylinear maps with k arguments
Lx---xL— L and let C*(L, L)-"+ be the subspace of L, —invariants,
i.e., the space of polylinear maps ¢ : L x --- x L — L, such that

k
8¢(11, ceey lk) = Z lp(ll, ceey li—l’ [8, li]’ li+17 ceey lk)’
i=1

forany I, ..., I, e L,§ e L",.

For an (L, U)-module M denote by M its base: M = {m € M : §(m) =
0,V8 € LT,}. Recall that M has an Z;-module structure induced by the
projection to M:

I(m) = pryl(m).

According to the results of [4], any cochain ¢ € C¥*1(L, L)-™ can be
reconstructed by its base ¢ € CK+1(L*, LT,)Ls, i.e., by the cochain

YLt x o x LY —>Lt1,
J/(Zl’ ) lk+1) = prLflllf(ll’ L) lk+1)’
according to the following rule:
lp(lla LR} lk+l) = Z Eal(ll) e Eakﬂ(lk-ﬁ-l)lzl(al’ ERRE ak+l)' (8)

gy eees Qpi

Here ay, ..., a;, runs through all basic elements of L, ifMisan (L, U)-
module with height 1, i.e., £ M = 0 and linear maps E,: L — U are de-
fined by

E\.y(vd;) = 8; jd%(v)/al.
Recall that E, are defined uniquely by the condition
SE, () = E,([5,1]), vée Lt lelL.
By Lemma 4.1,
s e (L, LyE
Moreover,
™ e CHY(L, L)k

Note that C**Y(L*,L*)Ls is generated by Lg-invariants in
CHY(L*, L)) and CHY(L*, LT,)% is generated by polylinear maps
Lfx... xL;: —>Lfl,

I

such that iy +... 4+, =—1
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By the grading property of right-symmetric algebra A, observe that the
necessary conditions for homogeneous elements ay, ..., a;, a;,; € AT, to
satisfy the condition

rSym(al, eyl agyq) € LT,
are
|l = =1, lag]+-- +]ae| =0.
If |a;| = —1, for some i < k, then
rsym(al, ce Ay, agyy) =0,

since a; € Z(A) (see Lemma 4.1). So, 5, (ay, ..., ax,1) = 0, if the fol-
lowing conditions are not satisfied: ay,...,a; € L§, apq € LT, Therefore,
5. can be considered as a cochain of C"“(Lg, L*)), defined by the rule

5 (ay, ... 4, 9,)=a,( Y sign T A1) © " 0 (i) )]

oeSym,,

According to Lemma 4.1, for any a,,...,a, € L = Af = {xi9; 4, =
1, ..., n}, the right multiplications in a,) o --- o a,) can be changed by
associative muliplications corresponding to the usual multiplication of ma-
trices. So, the right hand of (9) is equal to s;*(ay, ..., ay).

It remains to take ¢ =5, and use (8) and (9). 1
COROLLARY 4.3. If k = 2n, then s,, = 0 is an identity for A.

Proof. By the Amitsur—Levitski theorem,

sts(le(?il’ e ijn(?iZH) =0
forany iy, ji, . o5 ion, jou =21,...,n. 1
For a left polynomial f = Y"; Ai#' € R¥™ define #,(f) € R¥" as follows:
m(f)= Y A islo0t ot.
i10ees i #r

Denote by 7,: Rt — R an endomorphism of R, which corresponds
to f € R¥™ a sum of its monomials that do not depend on ¢, :

(D A pWfyooly)= > A iy o by

LEmMMA 4.4. Let f € R'ze,fil and f = 0 be an identity for A. Then

(i) 7.(f) =0and 7,.(f) = 0 are also identities for A.
(i) a.(f) is a scalar multiple of s3,,.
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In particular, the space of multilinear left polynomials, which are identities
for A, is (2n + 1)-dimensional and has a basis consisiting of left polynomials
sy r=1,...,2n+1.

Proof.  Notice that a; o---oa; =0, if one of the elements a, , ..., a; |
belongs to Z(A).
Take a, = z, € Z(A). Thus for any a; € A, we have

0= f(ay,...,ay)
= Wr(f)(ab teo aN) + %r(f)(ab et aN) =0. (10)

By Corollary 2.4, for any a; € N(Z(A)),i#r, a, € Z(A),
. (f)ay,....,ay)=F.(ay,...,4,,...,ay) 02z,
for some F, € R¥", which does not depend on ¢.. Namely,

Foty,.ostry.oo,ty)

= D k=241 2oiyyy igtr Mg, ity © 0 O L

Wr(f)(tb ""tN) = Z Z /\il’"wikvrtil o Otik o 1.

k<2n+1iy,..., iy #r
Thus, condition (10) can be written in the following way:
F(ay,....a,,...,ax)0z, +7.(f)(as,...,ay) =0. (1)

The first summand of the left hand of (11) depends linearly on z, and
the second does not depend on z,. Therefore,

F(ay,...,4,,...,ay)0z, =0, 12)

7. (f)ay,...,ay) =0, (13)

forany z, € Z(A) and ay, ..., 4,,...,ay € N(Z(A)).
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From (13) it follows that 7,.(f) = 0 is an identity for A.

Note that deg 7,.(f) < 2n+ 1, and deg F, < 2n. Since the centralizer of
Z(A) coincides with Z(A) (see Lemma 4.1) and Z(A) C A_,, from (7)
and (12) we obtain that

Fr(al,...,dj,...,aN):O

are identities for N(Z(A)). In particular, they are identities for 45 C
N(Z(A)) (recall that N(Z(A)) = A", & A}). We have mentioned that
Ay ={x;9;:i,j=1,...,n} = Mat,.

So, F, = 0, are identities on Mat, with no more than 2n variables of
degree at most 2n. By the Amitsur—Levitzki theorem, F, is a scalar multiple
of standard polynomial in variables 1, ..., f, ...,2n+ 1. Therefore

er(tl’ "'7t2n+l) = M, Z Signo—ta’(l)o”'?cr(r)”‘OtO'(ZnJrl) Ofr,

oeSym; Fr 2041

for some w, € #. In particular, 7, f is multilinear.
If £ is multilinear, then f = >**I! 7, f. Thus, for multilinear f,

2n+1 2n+1

f=2m(f)= 2 s
r=1 r=1

The linear independence of the polynomials s3,,r = 1,...,2n + 1, is evi-
dent. 1

Let f be some left polynomial. We will say that f has /-symmetric vari-
ables lijseeos by, if

f(tl, s eey tl‘lfl’ til’ t11+l’ ey tl’l*l’ ti,, tl,+1’ .. .)
= f(tlﬂ ceey til—lﬂ tiu(l)’ ti1+1, ceey til—l’ tig(”, ti,+l’ .. .),
for any permutation o € Sym;,. Similarly, f has (/, k)-symmetric variables

lis.oostiyand g, ...t if the sets of indices {iy, ..., i} and {ji, ..., ji}

have no common elements and
f(...,til,...,t,-,,...,th,...,t]-k,...)
- f( ey tia(l) ceey tia(l)’ ceey tjﬁ(l)’ ceey tﬁ(k)’ . ..),

for any permutations « € Sym, and 8 € Sym,. Here we suppose that
iip, < -+~ < ipand j; < --- < ji, but the ordering of the joint set
{it, -0 j1s---» jit May be mixed. It can be, for example, j;, < i; <
j» < iy < ---. S0, a more correct writing of the (/, k)-symmetry condition
in this case should be

FloosFireoos i s s i)

Zf(, tj/}(l)’ ceey tia(l)’ ceey t]’ﬁ(z)’ ceey tia(z)’ )
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COROLLARY 4.5. (p # 2). Let f be nontrivial multilinear left polynomial
with degree 2n + 1 and let f = 0 be an identity for A. Then f has no 3-
symmetric or (2, 2)-symmetric variables.

Proof.  Since sj, is skew-symmetric for all variables, except the last one,
we have

!
SZn(tlﬁ s t2n+l) =0,

if t;, =t; = 1, for some i, j, k, such that (i — j)(i — k)(j — k) # 0 or
1 =t;, j, = t,, for some (i, j) # (k, r), such that (i — j)(k —r) # 0. So, any
nontrivial linear combination of s, has no 3-symmetric variables. There-
fore, by Lemma 4.4, f has no 3-symmetric variables.

Suppose that f = ZZ”H AlsZn has 2-symmetric variables, say 7, ¢;,i < J.
Then

VCTEES /AT A TR T IR A TR T )
= NSh (b s By ot by bty oo Bpyns 0)
A Sh(Frs ey gy by ity e By ey b 1)
= (\isn” + A5 Nt - ),

where ¢ is substituted for #; and for ¢;. Note that

iJ)
Szn (t]_, ey ti*l’ t, ti+l! ey tj*l’ t, tj+l’ ey t2n+l)
i+j s 1)
—(—l)H’]SZn (tl’ ooy ti*l’ t, ti+l’ ooy tj*l’ t, tj+l’ ooy t2n+l)'

So,
S, oot Lty oo g G Ly s Bppy)
= (= (CLHIN)SS (1, oy by b biagy ooy gy by s e Tt
As we mentioned above, s5, has no 3-symmetric variables, so sg;j) has no

2-symmetric variables, except ;, f,,,,. Therefore, f has no (2, 2)-symmetric
variables. I

LEMMA 4.6. (p #2). Let f € R¥™ | of degree 2n+ 1 and let f = 0 be an

. . rsym 2n+1
identity on W, ™. Then

f= ¥ nO+Xm),

r:deg, f=2

where T, (f) is a linear combination of left polynomials sg;r),l #rnlr=
1,....2n+1,if deg, f =2 and m(f) is a scalar multiple of Shy-
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Proof. Prove that

[ =0,
if deg, f> 2.
Suppose that deg, f =1, > 2, for some r. Make t,-linearization for f
with linearization variables ¢, , ..., ¢, , . By Proposition 3.2 the polynomial
R=A rzA, s A ,”f hasl -symmetric variables ¢, 1, ...,

and G = 0 is the |dent|ty for W,. If R is multilinear, then by Corollary 4.5
we have R = 0 and by Proposition 3.1 degxr f < [,, a contradiction.
If R is not multilinear, then there exists another variable (say ¢,) such
that deg, G =1/, > 1. Make x,-linearization of G. Let
H=A

Uity 2 s o iz "7 S s

Note that H does not change the /,-symmetricity property for the variables
ly1, .-, L. In particular, H has a 3-symmetric variable , 1, ¢, ,, £, 5. If H
is multilinear, we obtain from Corollary 4.5 that H = 0. By Proposition 3.1
this contradicts the condition deg, G =1, > 1.

So, repeating such arguments gives us that def, f < 3 for all i =
1,...,2n+ 1

Prove now that 7, f has no 2-symmetric variable 7., g # r, if deg, f =2,
for some r. Suppose that it is not true, say deg, (Tt f) =1l,>1 Then by
Proposition 3.2

0= Atq,tqﬁl,tqyzAtq,tq,th : At ty,t, At,.,tr)i,tr)zf

7 'q.lq

gives identity O = 0 for 4 and Q has (2, 2)-symmetric variables 7, 1, #, »
and ¢, 1, t, . If Q is multilinear, then by Corollary 4.5, Q = 0. If Q is not
multilinear, linearization of nonlinear variables does not change the (2, 2)-
linearilty property for ¢, 1, ¢, , and ¢, 4, ¢, ,. Repeating this procedure and
using Proposition 3.1 and Corollary 4.5 gives us a contradiction. Thus f has
no (2, 2)-symmetric variables.

Reformulate these results in terms of essential variables. To do this, let us
make two remarks. If f is a left polynomial of degree N and the number
of variables is N, then essential polynomials and multilinear polynomials
are just the same. If f € R, and deg f = N — 1, then [-essentiality of f
is equivalent to the following condition: deg, f = 2, for some r # [, and
deg, f=1foralli#1lr anddeg, f=0. '

So, we obtain the following facts:

(i) Any nontrivial monomial of a polynomial f of degree 2n + 1 has
at least 2n essential variables. If it is not true, say, a nontrivial monomial
T = )\t of £ has no more than 2n — 1 essential variables, then either
deg, T > 2, for some r, or deg, T = 2, degtq T =2, for some g # r. It is
impossible.
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(i) Any nontrivial monomial of f with 2n + 1 essential variables is
multilinear monomial.

(i) If T = A;¢' is a nontrivial monomial of f with 2n essential vari-
ables, say t1, ..., 1, ..., t,,1, then T is [-essential and, moreover, deg, T=
2, for some r # [, and deg, T =1, for all i # [, r.

So, we have proved that f is a sum of essential monomials and 7-essential
monomials, for r =1, ..., 2n + 1. By the two remarks given above and by
Lemma 4.4, part (i), this means that

f= ¥ n(+Xm).

r:deg, f=2

By Lemma 4.4, part (ii), any m;(f) is a scalar multiple of sén.
To end the proof of Lemma 4.6 we should prove that 7, (f) is a linear

combination of left polynomials sg’,;”, l#rnlr=1,....2n+1,ifdeg, f=
2, and deg, f=0.
Note that

7.(f) = 2 m(7.(f)).

I#r

Recall that m;(7,(f)) is a sum of monomials of 7.(f) that do not depend

on t. Prove that m;(7,.(f)) is a scalar multiple of sg’,, 2
Suppose for simplicity of denotions that / < r. Let

]ZZ = At,,t,,t,ﬂ'l(Tr(f))-

Then f, is multilinear. By Lemma 4.4, f, is a linear combination of left
polynomials s5,, i =1,...,2n+1,

5 2n+1 )
fl = Z /"LiSZZn’ (14)
i=1
for some u; € #. In particular,
fl(tla s tl—l: l, tl+1: e tr—la ta tr+la s t2n+1)
2n+1 i
=Y Syt e s s b g b g, e b))
Notice that

fl(tl’ e b 4 L tr+17 tee t2n+l)

= 2f(tl’ e tl—lr tl+1’ cee tr—l’ Z, tr+17 tee t2n+l)9
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and

Sh(trs ooy g by tiss ooy bty bbyds ooy bypn) = 0, i1,
Sh (b e i ts b tiits oo s bty by bty oo e bopit)
= Sgly;r)(tla ey s ),
DO TR ISP A ‘TR TR SEPT A STR TN /S |
= (_1)#1715;1;;”("‘17 teo fla e b1, By, t2n+1)-
So, from (14) it follows that
JL TR /R ST 3 S TRURN Spy

et N 5
= (1/2)(/*L1 - (_1) l/‘Lr)SZn (tl7 AR tl’ et trflr L, tr+la e t2n+1)'

In other words,

1,
m(7,(F) = 1., 55
for v, = (1/2)(n; — (=1)'u,) € . Lemma 4.6 is proved completely. §

LemmMma 4.7. If f € R}f}ﬂ, deg f < 2n+1, and f = 0 is identity on A, then
f =0 as a left polynomial.

Proof.  If A has nontrivial left polynomial identity of degree d, then it
has a multilinear nontrivial left polynomial identity of degree < d. The
proof of this statement is based on the linearization method and it does
not depend on the associativity of A. Suppose that a nontrivial multilinear
polynomial g € R*®" has degree d < 2n and g = 0 is the identity for A.
Then g has a monomial of the form Az;t; ;...%, A # 0. As in the case
of matrices, if d < 2n+ 1, we can take a; = dq, ay = X194, a3 = X105, a4 =
X9l ...,y = X,,0,,, ifd =2m, and a; = x,,_49,,, if d =2m — 1. Then

adoad710~~~oa1=é’m,
and for any permutation o € Sym,, o # id,
ag.(d) 0...0 aa.(l) = 0
Therefore,
glay,...,a;)=Ad,, #0,
a contradiction. Lemma 4.7 is proved. |

Let J = {hy,..., h;} be a subset of & with k elements. For f e R,
denote by f; a sum of monomials of f of the form A; ;& o-- oy,
where iy, ..., i € J.
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LEMMA 4.8. The space of polynomials f € R']f‘}ft such that deg f =2n+1
and f = 0 is an identity for A is N (ﬁ )—dimensional. A basis of this space can
be generated by left polynomials s,,, | ,, where I runs through all subsets of N
with 2n elements and r runs through all elements of the set V.

Proof.  Since s,, ;, = 8, ., if and only if (1, r) = (I', r’), the linear
independence of the polynomials s,, ; ,, I S, [I| =2n,r € N, is evident.

Let f € RE" be a left polynomial of degree 21 4 1 and let f = 0 be
an identity for 4. Prove that f is a linear combination of left polynomi-
als s,, ; ,» where I runs all subsets of /" with 2n elements and r runs all
elements of ..

Let I be any subset of .. Take a; =0, if j ¢ 1. Then

flay,...,;ay)=0 = fJ(ail""’ainH—l):O'

Thus, f; = 0 is identity on A.

If N < 2n, then according to Lemma 4.7, f =0, and Lemma 4.8 is true.
If N =2n+1, then Lemma 4.8 is true by Lemma 4.6.

Suppose that N > 2n + 1. Since deg f = 2n + 1, any monomial of f has
no more than 2n + 1 essential variables. So, any nontrivial monomial of f
will be a part of f; for some subset / of & with 2n + 1 elements. On the
other hand, for any subset J of  with 2n + 1 elements, by Lemma 4.6 f; isa
linear combination of left polynomilas s, ;, and sgln’} where I, r e J,1 #r.
So, any nontrivial monomial T of f has 2n or 2n + 1 essential variables.

Denote by g a sum of nontrivial monomials of f with 2n + 1 essential
variables and by # a sum of nontrivial monomials of f with 2n essential
variables. Then

f=g+h

Let J be any subset of & with 2n + 1 elements. Then f; is a part of g.
By Lemma 4.8, f; is a linear combination of left polynomials s, ;, where
r € J. Let J' be another subset of # with 2n + 1 elements and " € J'. Note
that left polynomials s3, ; and sg’n’,/ have common monomials if and only
if J=J and r =7'. Thus, f; and f; have common monomials if and only
if (J,r) = (J',r"). Therefore, for some u;, € %,

g§=) fi= ZZMJ,rSEn,J’
J J rel
where J runs all subsets of & with 2n + 1 elements.

The case of A is considered similarly. Let I be any subset of & with 2n
elements. Then f; is a part of the left polynomial / and f; = 0 is an identity
for A. Therefore, by Lemma 4.8, f; is a linear combination of polynomials
Son. 1. Where r € I. Let I’ be another subset of ./ with 2n elements. Notice
that s,, ;, and s,, ; » have common nontrivial monomials if and only if
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I =1 and r =r'. Therefore, f; and f;, have common nontrivial monomials
if and only if f; = f;.. So, for some u,, € %,

h= Zfl = ZZI“LI,rSZn,I,ra
1

1 rel

where [ runs all subsets of & with 2n elements.
Therefore, if f € R, and f = 0 is an identity for A, then f = g + h is
a linear combination of left polnomials s, ;,. 1§

Proof of Theorem 3.3.

(i) Corollary 4.3 of Lemma 4.2,
(i) Lemma 4.7,
(iii) Lemma 4.6 and Lemma 4.8.

REFERENCES

1. S. A. Amitsur and J. Levitzki, Minimal identities for algebras, Proc. Amer. Math. Soc. 1
(1950), 449-463.

2. A. A Balinskii and S. P. Novikov, Poisson bracket of hamiltonian type, Frobenius algebras
and Lie algebras, Dokl. Akad. Navk. SSSR 283 No. 5, (1985), 1036-1039.

3. A.S. Dzhumadil’daev, Integral and mod p—cohomologies of Lie algebra W, Funct. Anal.
Appl. 22 No. 3, (1988), 226-228.

4. A. S. Dzhumadil'daev, A remark on the space of invariant differential operators, Moscow
Univ. Math. Bull. 37 No. 2, (1982), 63-68.

5. A. S. Dzhumadil'daev, Leibniz cohomology: pre-simplicial structure and cocycles construc-
tions by Novikov algebras, to appear.

6. A. S. Dzhumadil’daev, Cohomologies and deformations of right-symmetric algebras,
J. Math. Sci. 93 (1999), No. 6, 1836-1876.

7. M. Gerstenhaber, On the deformations of rings and algebras, Ann. of Math. 79 (1964),
59-103.

8. J. L. Koszul, Domaines bornés homogénes et orbites de groupes de transformations
affines, Bull. Soc. Math. France 89 No. 4, (1961), 515-533.

9. J. M. Osborn, Novikov algebras, Nova J. Algebra Geom. 1 (1992), 1-14.

10. J. M. Osborn, Simple Novikov algebras with an idempotent, Comm. Algebra 20 No. 9,
(1992), 2729-2753.

11. J. M. Osborn, Infinite-dimensional Novikov algebras of characteristic 0, J. Algebra 167
(1994), 146-167.

12. C. Procesi, “Rings with Polynomial Identites” New York, Dekker, 1973.

13. Yu. P. Rasmyslov, Simple Lie algebras satisfying the standard Lie identity of degree 5,
Math. USSR Izv. 26 No. 3, (1986), p. 553-590.

14. Yu. P. Rasmyslov, Identities of algebras and their representations, Contemp. Math. 131
(1992), 173-192.

15. E. B. Vinberg, Convex homogeneous cones, Transl. Moscow Math. Soc. 12 (1963), 340-
403.



	1. INTRODUCTION
	2. RIGHT-SYMMETRIC ALGEBRAS
	3. RIGHT-SYMMETRIC IDENTITIES
	4. IDENTITIES OF RIGHT-SYMMETRIC WITT ALGEBRAS
	REFERENCES

