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ABSTRACT

An algebra is called right-symmetric, if it satisfies the identity
ao(boc—cob) = (aob)oc — (aoc)ob. Right-symmetric alge-
bras over a field of characteristic p are considered. A formula
for the p-th power of a sum of two elements of right-sym-
metric algebras is established. The formula is similar to
Jacobson formula for the p-th power of a sum of two elements
of Lie algebras.

1. THE MAIN RESULT

An algebra 4 over a field k of characteristic p > 0 with multiplication
(a,b)—aob is called right-symmetric, if takes place the following identity

ao(boc) — (aob)oc=ao(cob) — (aoc)ob, Va,b,c € A.
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Right-symmetric algebras was defined in [5], [4], [2]. In fact right-
symmetric identity was appeared in considering rooted trees algebra about a
hundred years before in [1].

Example. Any associative algebra is right-symmetric.

Example. Let Z be a ring of integers and Z, be a subset of nonnegative
integers. Let m = (m,...,m,),m; > 0,m; € Z. Recall that the multiplication
of divided power algebra

On(m) = {x(a) o= (ocl, . 7ocn),o¢i c Z+70 < o <pm,}

is given by

Let¢; = (0,...,0,1,0,...,0) (ith component is 1). The derivation

9, : X s 20,

is called special. Let
w,m) = {x"9,:uecU,i=1,...,n}

be a space of special derivations of divided power algebra U = O,(m).
Endow W,(m) by multiplication

ud; 0 v0; = vo;(u)9;.

This multiplication is right-symmetric. Its Lie algebra is called Witt
algebra.

Any right-symmetric algebra is Lie-admissable: under commutator
[a,b] =aob —boa it can be endowed by a structure of Lie algebra.
Denote a Lie algebra obtained from the right-symmetric algebra 4 by
A" So, in some sense right-symmetric algebras form a class of algebras
between associative and Lie algebras. If L is a Lie algebra, for any x € L,
one can correspond derivation adx:A4 — A, y+— |x,y], called adjoint
derivation. For chapk = p > 0, a Lie algebra L is restricted if and only if]
(adx)” is interior derivation for any x € L. For any element x € L of a
restricted Lie algebra L there exists some element denoted by xI’) € L,
such LSlat (ad x)’ = ad xP). Then p-structure on L can be given by the map
X = X,
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Assume now that 4 be a right-symmetric and U(4) be its universal
multiplicative enveloping algebra. Recall that U(4) can be defined as a
factor algebra of tensor algebra T*(4, + 4,) generated by elements r, and [,
and relations

Yaarpp = Mg + Bry, lrxa+/s’b = al, + Py,

[raa rb] = Tab)s (1)

[’lm Zh] = lalb - lbom (2)

where a runs elements of 4. Here r, corresponds to the right-multiplication
operator

R,:A— A, b—boa,
and /, corresponds to the left-multiplication operator
L,:A— A, braob.

Contrary to Lie case for right-symmetric algebras the multiplication
operators R,,L,, and ada = R, — L, in general are not derivations.
Set a* = aR:! e,
a*=(---((aca)oa)---)oa
k times

be kth degree of a € 4 in left-normed bracketing. Recall that a linear
operator D : A — A, is called derivation, if

D(aob) =D(a)ob+aoD(b), Va,be A.

For a € 4, define a linear operator d, of the universal enveloping algebra
U(A) by

—
d, =71 — .

Let S(4) be a symmetric algebra of 4, i.e., an algebra of polynomials

on 4. Denote by d(4) a subalgebra of U(A4) generated by elements d,,a € A4.
Define on 4 a structure of right U(4)-module by

r,—R,, [,—L,

In particular, 4 has a structure of right module under d(4). We will
prove that d(4) is a commutative subalgebra isomorphic to a symmetric
algebra S(4). The map d: A — EndU(A), aw—d,, has the following
properties.

Theorem 1.1. For any a € A, an operator D, := R —R,, €EndA, is a
derivation. For any a,b € A,u € k,
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da+b = da + dba daa = apdav [dm db] =0,
[Va, db] =T{aD,}» [lw db] = l{an}ﬂ

and
p—1
(a+b) —a? —b? = ZA,-(a, b),
i=1
where i\, (a,b) is a coefficient at £~ of aad’~'(ta + b).

Corollary 1.2. For any a,b € A, take place the following relations

rZ+h —rg = ri = I{(a+b)" —ar—br} = r{pl }
Ai(ab) p.
i=1
A Lie algebra L is restricted if and only if ad x” is interior derivation for
any x € L [3]. By analogy of this statement we give the following definition.

Definition 1.3. A right-symmetric algebra A over a field of characteristic
p > 0 is called restricted, if R = R, for any a € A. For restricted algebra A a
map A — A, a~s aP, such that R, = R, is called as p-map.

In particular, a— a? is a p-map.

Corollary 1.4. If A is a restricted right-symmetric algebra, then elements d,
are in the center of the universal enveloping algebra U(A):

[da’ rb} = O? [dtn lb] = 07
for any a,b € A.

Definition 1.5.  An element e of right-symmetric algebra A is called left unit, if
eoa =a, for any a € A. An element e is called unit, if eca = ace = a, for any
a € A. A subspace Ann,(A) = {a € A : R, = 0} is called right annulator of A.

If a—d?v and a—adalh are two different p-maps, then
aPlv — alPl € Ann,(A), for any a € A.
If 4 has left unit, then its right annulator is trivial:

R,=0=a=¢e0a=0.

Any algebra may have no more than 1 unit. If 4 has no unit, one can join it
in external way: A* =A@ (e), such that eca=aoce=ua, Va€ 4, and
eoe = e, is a right-symmetric algebra with unit e. In particular, any right-
symmetric algebra can be completed to a right-symmetric algebra with left
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unit. For graded right-symmetric algebra A there is another imbedding to
right-symmetric algebra with left unit. If 4 = ©,c,4;, 4,04, € 4;;;, then an
algebra A" = A & (e,), such that

ejoa=a, aoce; = (alal+ 1)a,

for some fixed o € k, is an algebra with left unit. Here |a| = i means that a is
homogeneous: a € 4;. In particular, 4*! is graded and e; has degree 0.

Corollary 2.4. shows that a Lie algebra corresponding to restricted
right-symmetric algebra is also restricted in Lie sense. A p-map in Lie sense
can be given by right-symmetric p-map a — a?.

Any associative algebra considered as a right-symmetric algebra is
restricted. A p-map can be given by a — d”.

Let us check now right-symmetric Witt algebra W, (m) for restrictness.
Long calculations show that

R L/
Therefore, Witt algebra W,(m) is restricted, if and only if m; = 1, for all
i=1,...,n In other words, W,(m) is restricted as a right-symmetric algebra

if and only if W, (m) is restricted as a Lie algebra. Since right-symmetric Witt
algebra W,(m) has left unit e = >} | x;0;, the algebra W, (1) has unique p-
structure. Some examples for right-symmetric p powers:

p=2, (o)’ =udd,
p=3 ()" = ()’ + "o,
=5 (ud)” = (uw)

W)u" — (") + 28" + u*u™) o,
=T (WD) = () 4 Pl 50l

Y 4 3P () "+ 3t (W)

+ 6ut (1 V" + 51U+ 2P " 4w,

where o' = 0,(u),u" = 8?(u), etc.

2. SOME USEFUL FORMULAS

If 4 is associative (even alternative), then [r,,1,] = 0. Therefore, by
Newton binomial formula

et =3 ()

i=0
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for any k € Z_ . For right-symmetric algebras analog of this formula is the
following.

Lemma 2.1. For any element a of a right-symmetric algebra A and for any
positive integer k,

Y LAV
1) = =)Ly
=t =32 ()t
Here we set [,0 = 1.

Proof. We argue by induction on k£ = 1,2,.... The statement is true for
k = 1. Suppose that it is true for k. Then

~

- (k> (=)L L.
By (2),

[Va, la-’] = Zala.i - la.{i+l}.

Therefore,
k
N |
_— k+1 _ -1 zl.f,kfurl 0L i
(re = 1a) ;i( )17 +i( V11
BN B |
) ( ) (=) laenra™ = ( ) (1) L
! i
k
N |
B Z ( '> (_l)llub‘rﬁ_H»l - ( -) (_l)lla»{i%»l}rl;_l
i=0 ! 1
k+1
- <k+ 1) (1) kit
i=0 !
Lemma 2.1 is proved completely. -

Corollary 2.2. (r, — L) =i —1,,.
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Proof. Use Lemma 2.1 for k = p and the following arithmetic result:
p =
(l.> = 0(modp),
if0<i<p. ]

Corollary 2.3. (ra - la)p_l - Zzp:_()l lairipilii}.

Proof. Use Lemma 2.1 for k = p — 1 and the following number-theoretic
result:

("7 = 1 modp)

1

for any 0 <i<p. ]

Corollary 2.4. If A is restricted right-symmetric algebra, then A" is a
restricted Lie algebra. Corresponding p-map on A" can be given by a+ a”.

Proof. By corollary 2.2, adPa =+, — 5. If ¥ = r,,, then
ada=r,, — 1, =ada®
Therefore, A" is restricted.
Denote by I', a set of vectors o = (o, ..., a,) with integral coordinates

w€Z Let Tf={acl:0>0,i=1,....n}. Let I'=u,l, and
' =u,I}. ForaeT, set

|| = Z o;.
i

For o = (o,...,0;) € ', such that |a| = o; +---+0o; > 0, let

o\
o 0{1!"'0{]!

be multinomial coefficient. Set

(-

if a; < 0, for some s. Recall that ¢; is the vector with ith coordinate 1 (other
coordinates are 0, number of coordinates will be clear from context). For
o € I') denote by «, its last coordinate and let & € I' be o without o,. So,
o= (a,0) and

(-(2)-()C)
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The following relation for multinomial coefficients is well known:

()-2()

Let
Q' (q,n) ={a e, : o] =g},
Q(q,l’l) = {OC = (&’QO) € 1—‘n : |O(‘ =q, ®€ Q+((,] — U, 11— 1), %o > 0}
Notice that
_( 4 _
Q@ =( T ). e =2
Let

Q(q) =, Q(a,n).

For a€Q'(q), set h(a)=n, if a€Q¥(g,n). For acQ(q), set
1) = h(z).

Notice that

q+1

Qg+ Ln+1)=J_,

Q(l,n).
For o= (oy,...,0,_1,0) € Q(g,n), set
Ib.i - lb"‘l e lb"‘n—l 5
lb-’ - lb'&laR;n .

Lemma 2.5. Forany g€ Z,,
Ladr,= Y (—1)’<“><|Z>1b.71“;0.
2€Q(q)
Example. Let g = 3. Then
Load’ry = =Ly o pyoply + 3lyoplyly + 3lylyopl, — 6131,
= 3lyoplacs + 6l3l,0p — 3liaonyor t laob)on)yos-
and
Q' (3,1)
Q" (3,1)
Q(3,1)
Q(3,3)
Q7 (3, i)

( )} Q+(3 2) :{ (1 2)7(27 1)}’ Q+<3’3) = {(17171>}7
, fi>3o0ri<O,

(3}, Q3,2) ={(1,2),(2,1),(3,0)}
(1,1,1),(1,2,0),(2,1,0)}, Q(3,4) = {(1,1,1,0)},

, ifi>4o0ri<O.

{
0
{
{
0
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Proof of Lemma 2.5. For some statement X set o(X) =1, if X is true
and = 0, if X is false. Let

Loadry =Y > dgdyilags;

520 peQ* (¢—s)

for some 75, € k. We should prove that

Jgy = (=) <ﬁ| +ﬁ5(ss> 0)>

We use induction on ¢g. For ¢ = 1, the statement follows from (2).
Suppose that it is true for ¢ — 1. Then

Lad" vy =—[ry, 1, ad'r,)

fz Z ( )[,,b’]b_yl by Lags]

520 geQ* (g—s)

h(a)
S Z ('“') ot Ly Dyl Ly L

520 geQ (g—s) r=

o[ |
M ><| l)hw SR

(o o
_(_1>/< )(|a|)lb“1 "'lb‘“h(a() laR;+]
(00 o4
= (- )<|<x|>lb”1 e lya Dplya, -y U,

+(_1)11(“)(|Z| Ly =Dy Iyl

o o
+Z Z (—l)h( ) <|(X|>Ibﬂ . "Ib.x,v,l Iblb‘“r . "lb-ﬁ/,(x) laR;Jrl

q
+(—1)" ( a| Iy =Dy Dyl

153
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For s = 0 by inductive proposal

o= 30 (21,

>1, f,>0

~i= 3 (L),

>1, ;>0

Therefore, by (3),

lgo= > (—1)”””(12:2') — (_1)h<ﬁ)<|§|>.

t>1, f,>0

By similar reasons, for s > 0, we have

hps= ) (_1)h<ﬁ)<|ﬁ€’|+S)+(—1)”(ﬁ)<ﬁ|+s1>

0 p—¢ s ps—1

_(—1)® <|§ j)

Lemma is proved completely. Ol

Lemma 2.6. [/,,dy] = l1,p,}-

Proof. By Lemma 2.5 for ¢ = p, we have
[l 1y) = 1y ad’ry = lige — lyol,.

It remains to notice that

[lm rb-p] = —lb-l’la + laR,,.p . O

Corollary 2.7. [L,,Dy] = Li,p,;-

Lemma 2.8. [r,,d;] = "{aD,}-

Proof. We have
AR "Z —Ip] =1 ad’ry — T{lap?]y = T{aadrb—aadbr}-
By Corollary 2.2, aad’b = ar, — b? oca. Thus
[ras ) = rart —broa—acbribroay = T{aRl—aRyp} = T{aDy}- O

Corollary 2.9. [R,, Dy = Ry, p,;-

Lemma 2.10. For any a € A, D, € Der A.
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Proof. This statement and Corollary 2.7 and Corollary 2.9 are equivalent.
U
Corollary 2.11. (aD,)ad”'a—a* D, =0
Proof. By Lemma 2.10,
a’D, = (a?'ca)D, = (a” ' Dy)oa+a’ "o (aD,)
= (a?7Dy) R, + (a” 2o (aDy)) R, + a? ' o (aDy)
= = (aD)R - 4 (aP %o (aDy)) R, + a? o (aDy).
On the other hand, by Corollary 2.3,

p—1

(aD,)ad 'a= Z(a‘i o(aDy))RE
i=0

This proves our corollary. O

Lemma 2.12. [d,,d,] =0, a,b€A.
Proof. By Lemma 2.8,
[da’ db] = [I’Z, db] - [ru»l’» db} = _db aawra — arp,}

[rm db] adp—] Fa = Tar Dy}

_ =1,
= I'{4D,) ad’”r, — T{a» Dy}
= I{(aDy) ad-1a—a? Dy}

It remains to use Corollary 2.11. L]

Lemma 2.13. For left-normed p-powers of right-symmetric algebra takes
place the following formula

p—1
(a+0)" —a? =" =3 Aab),
i=1

where i\;(a,b) is a coefficient at = of aad”~"(ta + b).

Proof. We repeat arguments of the proof of Jacobson formula for the pth
power of a sum of two elements in restricted Lie algebras. Present element
X = (ta+ b)? as a sum of polynomials on ¢:
p—1
X=ra’+) Afab)+b?, (4)
=1
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for some A,(a,b) € A. Prove that
P
aad™ (ta+b) Z
We have
X N
- = Zl it "' A;(a, b),
By Leibniz rule,

P
Ai=1} i} _ {p—i}
Z ((ta+b) . ) Fitavo) = Zalta+b A= '}r{za+b}

By Lemma 2.2,

aad\(ta +b) = Zalla+h) o1

(ta+b)"

So, (6) is proved. Lemma 2.13 follows from relation (4) for t = 1.

3. PROOF OF THEOREM 1.1

Lemma 2.8, 2.6, 2.10, 2.12, 2.13.
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