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ABSTRACT
Let V, = (ey, ..., est1) be the vector product n-Lie algebra with n-Lie commuta-
tor [er,...,€i...,ent1] = (—1)'e; over the field of complex numbers. Any

finite-dimensional n-Lie V,-module is completely reducible. Any finite-
dimensional! irreducible n-Lie V,-module is isomorphic to an n-Lie extension of
so,+1-module with highest weight ¢m; for some nonnegative integer 1.
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1. INTRODUCTION

An n-algebra A= (A,[,...,]) with a skew-symmetric n-multiplication
[,...,]1: A"A = A (ay,...,a,)—[ay,...,a,]) is called n-Lie, if
lat,...,an-1,an,...,a2,-1]]

2n—1
i+ .
= Z(_l)l n[[ala v 7an—1aai]aana vy @iy ‘aaZrl-l]a
i=n

for any ai,...,ax-| € A. Here 4; means that the element g; is omitted. n-Lie
algebras was firstly defined in Filippov (1985). Sometimes they are called as
Filippov, Nambu or Takhtajan algebras.

To any n-Lie algebra one can associate a Lie algebra L(A) = A""' A, called basic
Lie algebra, with a multiplication given by

[ai A~ ANap_1,by A= Abp_q]

n—1
=Y (-1)""Mlar,...,@n-1,6,b1, .., biy . by,
i=1

or by

lay A ANan1,by A+ Abyy]

n-1
- Z(—l)i+l[al"“7&i7' . "an7[ai’ bl" . '7bn—l]]7
i=1

where b; means that the element b; is omitted.

Example 1. Let A = K{x),...,x,] under Jacobian map
(ai,...,a,)— det (0i(a;))).

Then A is n-Lie (Filippov, 1985, 1998) and its basic algebra is isomorphic to
divergenceless vector fields algebra S,_; (Dzhumadil’daev, 2002).

Example 2. Let V, be (n + 1)-dimensional vector space with a basis {ej,..., €41}
Then V, under a n-Lie multiplication

[61,...,55,...,e"+|] = (—1)'e,-

can be endowed by a structure of n-Lie algebra. This algebra is called vector product
n-Lie algebra. For n = 2 we obtain well known vector product algebra on K. From
results of Filippov (1985) it follows that L(V,) = sop41.

One can expect that the n-Lie algebra V, plays in a theory of n-Lie algebras a
role like sl; in theory of Lie algebras. The aim of our paper is to describe all
finite-dimensional representations of vector products n-Lie algebra over the field
of complex numbers.
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Let my,...,Mue1y2; be the fundamental weights for so,,;. Recall that
504 = sl @ sly and any irreducible sos-module can be realized as sl @ sl;-module
M,, = M, ® M,, where M, denotes (¢ + 1)-dimensional irreducibie sl,-module with
highest weight r. The main result of our paper is the following:

Theorem 1.1. K =C.

(1) Any finite-dimensional n-Lie representation of V,,n > 2, is completely
reducible.
(i) Let M,, be an irreducible so,-module with highest weight (t,r). Then M,,
can be prolonged to 3-Lie module over V3, if and only if t = r.
(iit) Let M be an irreducible module of Lie algebra so,1, n > 3, with highest
weight a. Then M can be prolonged to n-Lie module of V,, if and only if
has a form tmy, for some nonnegative integer t.

So, we obtain a complete description of finite-dimensional n-Lie V,-modules
over C. Our result shows that any irreducible n-Lie representation of V,, is ruled by
some nonnegative integer ¢ as in Lie case V, = sly. Call t mentioned in Theorem 1.1
n-Lie highest weight.

Corollary 1.2. (K = C,n > 2) The dimension of any irreducible n-Lie V,-module

2r—-1 t—1
with highest weight t is equal to i (n + )
n+t—1 t
For example, the dimension of any irreducible V3-module with highest weight ¢ is
equal to (7 + 1)2.

Remark. If n = 3 and if we consider infinite-dimensional modules, then studying of
Vj-representations can be reduced to the problem on describing of gl;-modules. A
definition of complex size matrices algebra gl; (see Dixmier, 1973; Feigin, 1988).
One can prove that U(V3) has a subalgebra isomorphic to gl; ® gl;.

2. n-LIE MODULES

Let A be an n-Lie algebra. Let End A be a space of linear maps A — A. Recall
that an operator D € End A is called derivation, if

n

D([aly---)an]) = Z [ala"'aai—hD(ai)aaH-la"'aan]v

i=1

for any aj,...,a, € A. Let Der A be a space of derivations of A. According n-Lie
identity for any n — 1 elements a),...,a,—) € A one can correspond adjoint deriva-
tion ad{ay,...,a.,-1} € Der A by the rule ad{ai,...,a,—1}a, = [a1,...,a,]. Denote

by Int A a space generated by adjoint derivations of A. Call a derivation D € Der A
inner, if D € IntA. Then DerA is a Lie algebra under commutator (D;, D;)—
[Dy,D;] := D\D; — DD and IntA is its Lie ideal. If A has no center, Int A is
isomorphic to L(A).
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An n-Lie module over n-Lie algebra A is defined as a vector space M such that a
semi-direct sum A + M is once again n-Lie. These mean that the n-Lie multiplication

{,...,]1 on A is continued to A+ M such that [a;,...,a,] =0, if at least two
arguments among a,,...,a, belong to M and the n-Lie identity is true for any
ay,...,a, € A+ M. In other words,
[al>--‘aai:m:ai-i-la“'aan] = _[ala"'7aiaai+1am7"'aan]7 1 < i< n,
[ala---7an-—1a[am~-'7a2n—2>m]]_ [ana"')a2n-—27[a]a"'aan—l)m]]
2n-2

- Z[an;"-;ai—la[ala"'7an—|aai]7ai+1a"')azn—Zam]a
i=

[ala'“7an—25[ana"'aa2n—l]am]
2n—-1
= Z[a"’ .- 'aai-—la[aly - 'aan—Z)aiam]a Aitiy -y GZn—l],
i=n
for any aj,...,a,-2,an,...,02,—1 € A and m € M. So, any module of n-Lie algebra

is an usual module of Lie algebra, if n =2. If n > 2, then any module of n-Lie
algebra A is a Lie module of the basic Lie algebra L(A) under representation
p:A"'A = End M defined by p(a; A--- A ay_1)(m) = [ay,...,a,_1,m], such that

p([al, s ] A Appl A= A a2n—2)

= Z(~1)i+"p(a1 A NG A Aay)plaiNag A Aazp_a), 4]
i=1

for any ay,...,a,_» € A. If M is a Lie module over Lie algebra L(A) that satisfies
the condition (1) for any a,...,a2,-2 € A, then we will say that Lie module
structure on M over L(A) can be prolonged to a n-Lie module structure over n-Lie
algebra A, or shortly that Lie module M can be prolonged to n-Lie module.

Example. For any n-Lie algebra A its adjoint module, i.e., a module with vector
space A and the action (ay A+~ Aap—1)b=lai,...,a,-1,b] is n-Lie module.

Let A be an n-Lie algebra. Denote by U(A) the universal enveloping algebra of
the Lie algebra L(A). Let Q(A) be an ideal of U(A) generated by elements

Xay,azmy = a1, ;apl Aang i Ao Aazg—

n
=D EDF@ A Ad - Aa) (@ A ppr A A G22).
i=1

Let U(A) = U(A)/Q(A).

Any Lie module of L(A) can be prolonged to n-Lie module, if and only if it is
trivial Q(A)-module. In other words, there are one-to one correspondence between
n-Lie modules and U(A)-modules. In this sense U(A) can be considered as universal
enveloping algebra of n-Lie algebra A.

Let M be a n-Lie module over n-Lie algebra A. Let N be a subspace of M,
such that [ay,...,ai_1,m,ai41,-..,a,-1) € N, for any me My, i=1,...,n, and
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ap,...,qi,...,a,—1 € A. In such case we will say that N is n-Lie submodule of M.
Any module has trivial submodules 0 and M. Call M irreducible, if any its sub-
module is trivial. Call M completely reducible, if it can be decomposed to a direct
sum of irreducible submodules.

Proposition 2.1. Let M be a n-Lie module over n-Lie algebra A. Then M is irredu-
cible, if and only if M is irreducible as a Lie module over Lie algebra L(A). M is
completely reducible, if and only if M is completely reducible as a Lie module over
Lie algebra L(A).

3. VECTOR PRODUCT n-LIE ALGEBRA AND ITS MODULES

Let V, be a vector product n-Lie algebra over C. It is (n + 1)-dimensional and
the multiplication on a basis {e],...,es+1} is given by

ler,..., 66 enp]l =(=D'e;, i=1,....,n+1.

For example, V; is the vector product algebra on C* and as a Lie algebra it is
isomorphic to si;.

Recall that the Lie algebra of skew-symmetric n x n-matrices so,, n > 3, is
semi-simple over K = C. More exactly, it is simple, if n # 4 and has type By, 2, if n is
odd and type Dy, if n is even. If n = 4, then so4 = A| @ A;. For n =3, so3 = Ay.

For 1 € Q denote by [4] a maximal integer, such that [A] < A. Let 7y, ..., 7z
be the fundamental weights of so, and M(x) be the irreducible so,-module with
highest weight «. Any highest weight can be characterized by [n/2]-type of non-
negative integers {a1,..., %y}, namely

{n/2]

= E T,
i=1

There is another way to describe highest weights.
Suppose that a sequence of integers or half-integers A = {41,...,41,/2 } satisfies
the following conditions

o Lh2h2 2y 20ifnisoddand 4 > 4, > -+ > |4, if n is even.

e o;i=1,...,[n/2], are nonnegative integers, where o; = A; — Aiyy,i=
1,....[n/2] = 1 and a2 = 24p2, if 1 is odd and a2 = Awja—1 + Aap2, if 1
is even.

Then any irreducible finite-dimensional so,-module with highest weight « can be
restored by a such sequence 1.

Let M be an irreducible so,-module. For n # 4, set g(M) = r, if its highest
weight « satisfies the condition «, # 0, but o,» =0, for any ~ > r. For n =4, set
qg(M) = 1, if so4-module is isomorphic to M,,, for some nonnegative integer ¢ and
gM)=2,if M= M,,, for some t # r.
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Let o be a highest weight for so,-module and n # 4. Then g(a) = 1, if and only if
o has the form k), for some nonnegative integer k.

Any finite-dimensional irreducible sl;-module is isomorphic to (I + 1)-
dimensional irreducible module M; with highest weight {. Recall that any highest
weight of sl; can be identified with some nonnegative integer. As we mentioned
above so4 = sl; @ sly. Any irreducible sos-module M can be characterized by two
nonnegative integers (1,r). Namely, M = M,, = M, ® M,, where the action of
a+bon m' ®m’, where a is an element of the first copy of sl and b is an element
of the second copy of sl; and m’ € M,, m" € M,, is given by

(a + b)(ml ® mll) — a(ml) ® m// + m/ ® b(m").
Notice that in this realization to sos-module M with g(M) =1 corresponds the
sly @ sl,-module M, ,, for t > 0,1 € Z.

Filippov (1985) proved that V, is simple and any derivation of V, is inner.

Therefore, A"V, = Int V,. More detailed observation of his proof shows that takes
place the following

Theorem 3.1. For any n> 2, DerV, = IntV, = so,1. The isomorphism of Lie
algebras L(V,) = 50,11 can be given by

eqN- N E N Nepy '—)(—1)i+j+"+leij, i <J.

where e;; is a skew-symmetric matrix with (i, j)th component 1, (j,i)th component
—1 and other components (.

Lemma 3.2. Let M be so,,1-module. Define quadratic elements R;jy of U(s0n4.1) by
Rijsk = ejjeg + eisexj + enejs, 1 <14 j,5,k <n+l.

Then M can be prolonged to n-Lie V,-module, if and only if, Rijuym =0, for any
meMand 1 <i<n+1,1<j<s<k<n+1,i¢{jsk}

Proof. Below we use the following notation. If a, b, c,... are some vectors, then
{a,b,c,...) denotes their linear span and {a,b,c,...} denotes the set of these
elements and by (a, b,c,...) we denote the vector with components a, b, c, .. ..

Notice that X, 4, , i1 skew-symmetric under arguments aj,...,a, and
Gnil, - -, a2q—2. Therefore, X, 4, , =0, if dimension of the subspace (ay,...,a,)
is less than n or dimension of the subspace {an41,...,a2,—2) is less than n — 2.

Suppose that dim{ay,...,a,) = n.

Check that X, .. ,=0, if V,# (a,...,a2,—2). We can assume that
ai,...,ax_> are basic vectors. Suppose that {aj,...,a,} ={e1,...,é;,...,ent1}
for some i€ {l,...,n+1}. Since V, does not coincide with the subspace
{(ay,...,am-2) and therefore, its dimension is less than n+1, we have
{ans1,...,am2} ={er,...,é,...,€;,...,6,...,e,11} for some j,s#i,j<s. Let
for simplicity a) =ey,...,a;—| = €j~,a; = €ir1,...,an = €p1 and (Api1,...,d20-2) =

(ery... €. ,€j ... 65 ... €n11).
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We have
[at,...,a)=1le1,...,€é,...,enp 1] = (—l)ie,-.
Further

a,Nayri A---Nay-2=0,
if a, # e, €}, e;. Therefore,
(a1 /\~~-&,/\---/\a,,)(a,/\a,,+1 /\‘~-/\a2,,_2) =0,

if ar # €i, €j, €.

Let f: A"V, = 50,41 be the isomorphism of Lie algebras constructed in
Theorem 3.1. Prolong it to the isomorphism of universal enveloping algebras
f UV = U(50n41).

Thus,

f([al’---aan]A(an+1 /\"‘/\a2n—2))
=f((=) eiAer A& A& NN Aepy)
=—fe1 A6 A b A Alnyr)

= (=1)/TF ey
On the other hand

n
DD f @y Aap A Aag) f(@r AGuat Ao Aazgd)
r=1
=—(=D)""f(e Aowbio€i-Nenpt) X f(ejACIN 8o bge- Nenyl)
— (S1 (e A il Nenst) X fles Aer Ao Gy by Aens)
= (_1)j+s+n+l'eijeis + (=1 eye;
= (= 1)y, e] = (= 1) e
Therefore, f(Xa,,. .a,_,) =0, and X, 4., =0, if the subspace generated by
ai,---,ax_y does not coincide with V,.

Now suppose that V, is generated by elements a,...,a,-2. As above we
can assume that these elements are basic elements and (ay,...,a,) =
(el,...,éi,...,e,,“) and (a,,+|,...,a2,,_2) = (61,...,éj,...,és,...,ék,...,en+1) for

some 1 <i<n+1,1<j<s<k<n+1,i¢{jsk}. Then
[al7~--7an]/\an+l/\"'/\a2n—-2:07

since ¢; € {an41,...,a2,-2}. Calculations as above show that

n
Z(‘I)H'"f(al AN---@p N ANag) f(ar Ay A+ A aze—2) = Rk
r=1
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So, f(Xa,,...am) € (Rijsk : 1 <i<n+1,1<j,s,k <n+1). Itis easy to check that
Rijs is skew-symmetric by arguments j, s,k and R =0, if i € {j, 5,k}. S0, 50541-
module M can be prolonged to n-Lie module, if and only if R;um = 0, for any
meMl1<i<n+LI1<j<s<k<n+1. O

Below we use branching rules for irreducible modules corresponding to the
imbedding so,_; C so, given in Boerner (1955). The proof of Theorem 1.1 is based
on the following:

Theorem 3.3. Let k > 1.

(i) Let M= M(x) be a finite-dimensional irreducible soy.y1-module with
highest weight o = Zf;l o;7;. Then M as a module over Lie subalgebra soy; has a
submodule, isomorphic to M(@), where & = ZLI amand & =o;, i=1,...,k—1,
and a; = o1 + o

(iil) Let M= M(x) be a finite-dimensional irreducible soy-module with
highest weight o = Zk ;7. Then M as a module over Lie subalgebra soy,_, has a
submodule, isomorphic to M(&), where & = E 11 anand 8, =a;, i=1,...,k—2,
Op_1 = Og—1 + 0.

Proof. (1) Take
k=1
M=/, hi=) aj+ou/2, 1<i<k-l
j=i
According to branching Theorem 12.1b (Boerner, 1955), any soy-submodule of

M (o) has weight of the form &, such that corresponding 2 satisfies the following
inequality

22> > et > ] = Ak > -

The 4; are integral or half-integral according to what the 4; are. If we take A=A,
then such 1 satisfies these conditions. Therefore, M(a) has soy-submodule iso-
morphic to M(a), where & = Z_l Ty, % =Ai— A =a, for i=1,... k-1,
and 8 = Ak_1 + Ak = A1 + A = a4_1 + a. So, the soy.1-module M(oc) as soy-
module has a submodule isomorphic to M(&), where & = Zf‘zll o + (o= + o )7y

(i) We have
o =Ai— Ay, 1<i<k—1, o=+ A

By branching Theorem 12.1a (Boerner, 1955), any soy_j-submodule of M(«)
is isomorphic to M(&), such that corresponding A satisfies the following
inequality

A2 A > > o > | > |l
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The 1, are integral or half-integral according to what the 4; are. Notice that a
sequence A constructed by the following way satisfies these conditions

A=Ak, 1<i<n-1.
So, soy-module M() as soy_-module has submodule M(&), where

_&i=zi'~zi+1=ai7 ISISk—zy

Bt = 2Apmt = 20gm1 = 04—y + 0.

Corollary 3.4. Let n >4 and M be irreducible so,-module such that q(M) > 1.
Then M as a module over subalgebra so,_, C so, has a submodule M, such that

q(M) > 1.

Proof. 1t is easy to see that for irreducible module M with highest weight «, the
condition g(M) > 1, is equivalent to the condition ) _,_, a; > 0.

Let & be highest weight of so,_;, defined by &; =«a;,i=1,...,k—1, and
O = Ok—1 + O, if n=2k+ 1, and o = o, = 1,...,/(——2, Ap—1 = Og—1 + 0, if
n = 2k.

Notice that

Z&i = Zdi"rzak > Z“i,

i>1 i>1 i>1

ifn=2k+1,k>1and

Z&i = Zdi,

i>1 i>1

if n=2kk>2.
By Theorem 3.3, so,-module M = M(x) as so,_;-module has a submodule
isomorphic to M = M(a). If g(M) > 1, then (M) > 1. O

Notice that g/, can be realized as a Lie algebra of derivations of K[xy, ..., x,] of
the form Zf’ =1 Aijxi0j; Zij € K. Its subalgebra so, is generated by elements
eij = x;0; — x;0;. The set {e;;: 1 <i < j < n} consists of basis of so,. The multiplication
on so, can be given by

[e;j,esk] = 0, lf |{l,_], S,k}l = 4,

leij, ei] = —ejs, [eij, ejs] = eis, e, ejs) = —eij.

Lemma 3.5. Let M = M,, be an irreducible sos-module. Then M can be prolonged
to 3-module over 3-Lie vector product algebra Vs, if and only if t = r.
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Proof. The algebra so4 has the basis {¢;; : 1 <i < j < 4}. Take here another basis
{fi:1<i<6}, by

fi=(ei2+eun)/2, fr=(e1s—en)/2, fi=I(e1a+en)/2,
fa=(—en+en)/2, fs=(ez+en)/2, fo= (—e+en)/2.

Then

fu,l=~f Unfl=r, Ufl=-1,
(fa, fs1=fe, [fs,fel=fa, [fe,fal=1Ts,
[f,~,fj]=0, i=1,2,3, j=4,56.

We see that

en=fi—fa, en=fr+fs, eu=rf—Je
en=fit+fes, ea=—fr+fs, eu=fi+f4,

and

Ri23s = enness — ezen + eyqens = C, — (y,
where

G=fitfi+h, Q=fi+fi+£,

are Casimir elements of subalgebras (f1, f2, f3) = sly and {f4, fs, feo) = slo. Well
known that any irreducible finite-dimensional si;-module is uniquely defined by
eigenvalue of the Casimir operator on this module. Therefore, M, , is 3-Lie module,
if and only if ¢ = r.

Lemma 3.6. Let n > 3. Any irreducible so,+1-module M(tny) can be prolonged to
n-Lie module of V,. Let M be an irreducible so,i1-module with q(M) > 1. Then
M cannot be prolonged to n-Lie module over n-Lie algebra V,.

Proof. Let n > 3. Let us consider realization of M(tn,) as a space of homogeneous

polynomials ) «; «..<icput Aiyomic¥iy * iy
By Lemma, 3.2, we need to check that

Rigu=0, foru=x; - x,
for any {i, j,s,k}, such that 1 <i<n+1, 1<j<s<k<n+1,i¢{jsk} and
1<ip<ip<--<i<n+l.

Let I ={i,j,s,k}. Present u in the form vw, where v= Hlelﬂ{il,...,i,}xl and

w = [lieg,..ips %1- Notice that

Rijsk (UW) = Rijsk (U)W.
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Therefore it is enough to check that R (v) =0, for elements v € M(tm;) of the
form

v=xixxxg, 1<i<n+l, 1<j<s<k<n+1,i¢{jsk}
v=xxx, 1< j<s<k<n41,

v=xxgxg, 1<i<n+l, 1<s<k<n+1,

v=xx, 1<j<k<n+1,

v=xx;, 1<i<n+1, 1<k<n+1,

v=x, 1<k<n+l, v=ux, 1<i<n+]l.

Let i # j,s,k. Then

Rijsk (xixjxsxy)
- 2 2 2 2 2 2
= e,'j(x,-xjxs — x,-xjxk) + eis(x,'xsxk - Xixj'xs) + e,-k(x,-xjxk - x,-xsxk)

= i (xix))x; — eij(xix))x; + eis(Xixs)x; — €is(xixs) X5 + € (xix)x; — en(Xixe)x
2 23,2 2 25,2 2 2y 2 2 2y ,2
=(x; — xj)xs = (x = xj)xk + (x; —x)x — (x; — xs)'xj

+ (22 - x%)x? — (2= xH)x? =0,
Similarly,

Rija(xjxsxi) =0,  Rig(xixexy) =0,  Rijg(xsx) =0,
Rijsk(xixk) =0, Rijsk(xk) =0, Rijsk(xi) =0.

So, we have checked that Q(V,)M(tn;) =0, if n > 3.

Suppose now that g(M) > 1. We need to prove that R;um # 0, for some
I1<i<n+Ll<j<s<k<n+land me M.

Let us use induction on n > 3. If n = 3, then by Lemma 3.5 any irreducible
sop4+1-module M with g(M) > 1 cannot be prolonged to rn-Lie module. Suppose that
the statement is true for n — 1 > 3. If ¢(M) > 1 for 50,..;-module M, then by Corol-
lary 3.4 there exists its so,-submodule M, such that g(M) > 1. Then by inductive
suggestion there exists some R;ju € Q(V,—1) CU(so,) and m e M, such that
Rijum #0. Since me M C M and R € U(so,) C U(son41), this means that
Rijgxm # 0 as elements of M. So, we have proved that our statement for ». O

Proof of Theorem 1.1. (i) By Theorem 3.1, Lie algebra A" 'V, = s50,,, is
semi-simple. Therefore, by Weyl theorem and Proposition 2.1, any finite-dimensional
n-Lie representation of V, is completely reducible.

(if) and (iii) For n = 2 our statements are evident. Let n > 2. By Lemmas 3.6
and 3.5, M(tmy),n > 3, or M,;,n =3, is V,-module for any nonnegative integer ¢
and any module with g(M) > 1 cannot be n-Lie module.
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