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NILPOTENCY OF ZINBIEL ALGEBRAS

A. S. DZHUMADIL’'DAEV and K. M. TULENBAEV

ABSTRACT. Zinbiel algebras are defined by the identity (a o b)oc =
ao(boc+cob). We prove an analog of the Nagata—Higman theorem for
Zinbiel algebras. We establish that every finite-dimensional Zinbiel
algebra over an algebraically closed field is solvable. Every solvable
Zinbiel algebra with solvability length N is a nil-algebra with nil-
index 2V if p = char K = 0 or p > 2V — 1. Conversely, every Zinbiel
nil-algebra with nil-index NN is solvable with solvability length N if
p=0orp> N —1. Every finite-dimensional Zinbiel algebra over
complex numbers is nilpotent, nil, and solvable.

1. INTRODUCTION

Let A = (A, o) be an algebra, where A is a vector space over a field K
of characteristic p > 0 and A x A — A, (a,b) — a o b, is a multiplication.

Let f = f(t1,...,tr) be some noncommutative, nonassociative polynomial
with k variables t1,...,tx. We say that A satisfies an identity f = 0 if
flay, ... ax) =0 for any substitutions ¢; := aq, ..., tx := ax by elements of

A. Here, multiplications are calculated in terms of the multiplication o.

For example, an algebra with the identity ass = 0 is said to be associative
if

ass = tl(tgtg) — (tltg)tg.

An algebra with the identity t" = 0 is called a nil-algebra. An associative
nil-algebra has nil-index n if a”~! # 0 for some a € A.

Any associative algebra with nil-index n is nilpotent with nilpotency
index no greater than 2™ — 1: for some N = N(n) < 2™ — 1, the identity

t1---tn =0
holds (the Nagata—Higman theorem). In other words,
al O+++0 aN — O
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for any aj,...,any € A [13, 7, 4]. The problem of finding more exact esti-
mates for N(n) remains still difficult. For example, N(2) = 3 and N(3) = 6.

A similar problem for Lie algebras is also complicated and very interest-
ing. It is related to the Engel theorem and Burnside problems [10].

An algebra with the identity rsym = 0 is said to be right-symmetric,
where

rsym = ty(tats — tate) — (tat2)ts + (t1t3)tz

(see [5, 18]). In [2], such algebras are called chronological algebras. Later
[8], the name “chronological” was used for a different algebra.

Algebras with the identity zinbiel = 0, where

zinbiel(tl, tz, tg) = (tltg)t:; — tl(tgtg) — tl(t3t2),

are called Zinbiel algebras.

Ezample. (Clz],*), where (a xb)(z) = %a(x)b(x), is right-symmetric.
Moreover, it satisfies also the identity lcom = 0, where
lcom(t1, ta,t3) = t1(tats) — ta(t1ts).
Ezample. (C[z],0), where (aob)(z) = a(z) [ b(t)dt is a Zinbiel algebra.
An algebra satisfying the identity leibniz = 0, where
leibniz(ty, ta, t3) = t1(tats) — (trte)ts + (t1ts)ta,
is called a Leibniz algebra. Such algebras were introduced in [3, 11]. The

Koszul dual [6] of the Leibniz operad is defined by the identity zinbiel = 0,
i.e., by the condition

(aob)oc=ao(boc+cob) (1)

for any a,b,c € A. Such algebras are called Leibniz dual or Zinbiel (read
Leibniz in reverse order) algebras [12]. In our paper, we do not follow
terminology of [8, 9] and use the term Zinbiel algebras for Leibniz dual
algebras. For the history of the name “chronological,” see [16].

An algebra A is said to be solvable if A*) = 0 for some k, where A(®) are
defined by

A = A AFD = 4D 6 4D >0,

We say that A has solvability length N if AXN) =0, AN-1 £,

An algebra A is said to be nilpotent if there exists N such that the
right-bracketed product of any N elements of A vanishes:

alo(a20(~--(aN,1oaN)~-~)):0.

The minimal N with such property is called the nilpotency index. For
every nilpotent Zinbiel algebra A, there exists N such that the product of
arbitrary N elements of any bracketing type vanishes. It is obvious that
any nilpotent algebra is solvable.
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We denote by r, and [, the right and left multiplication operators on
A= (A, o):
rq(b) =boa, 1,(b)=aob.
The powers a* and a(**) are defined by
al=a, a Ftt :Zl;(a)zaoa'k>

ol = a, alF) = gCk=1) 5 (k1)

We say that a Zinbiel algebra A is a nil-algebra if for every a € A, we have
a’*® = 0 for some k = k(a). Then, given an arbitrary element of a Zinbiel
nil-algebra, some power of this element of any bracketing type vanishes. If
a™”=0foralla € Aanda ™! #0 for some a € A, then we say that A is a
nil-algebra with nil-index n. A Zinbiel algebra is said to be simple if it has
no proper ideal, i.e.,if o AC I, Aol C1I,then [ =0or I = A.

In this paper, we prove the following results.

Theorem 1.1. Let K be an algebraically closed field of characteristic
p > 0. Then every finite-dimensional Zinbiel algebra is solvable.

Theorem 1.2. Let K be a field of characteristic p > 0 and A be a
solvable Zinbiel algebra with solvability length N. If p =10 or p > 2V — 1,
then A is a nil-algebra with nil-index no greater than 2. Conversely, if A
is a Zinbiel nil-algebra with nil-index N and if p=0 orp > N — 1, then A
is solvable with solvability length N.

Theorem 1.3. Let K be a field of characteristic p > 0. FEvery Zin-
biel nil-algebra is nilpotent. If A is a nil-algbera with nil-index n, then the
nilpotency index of A is no greater than 2™ — 1.

Corollary 1.4. FEvery finite-dimensional, simple Zinbiel algebra over an
algebraically closed field of characteristic p > 0 is isomorphic to the 1-
dimensional algebra with trivial multiplication.

Corollary 1.5. FEvery finite-dimensional Zinbiel algebra over the field of
complex numbers is nilpotent (and, hence solvable and nil). If p > 0, then
every finite-dimensional Zinbiel algebra over an algebraically closed field of
dimension <log,(p+1) and characteristic p is nilpotent (and hence solvable
and nil).

Let
Z(A)={z€A|laoz=2z0a=0Vac A}
be the center of A.

Corollary 1.6. Let A be a finite-dimensional Zinbiel algebra over the
field of complex numbers of dimension n. Then there exists N < n such
that the product of any N elements of A in any type of bracketing is equal
to 0. Moreover, A has the nontrivial center Z(A) # 0. The same is true for
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any finite-dimensional Zinbiel algebra A over a field of characteristic p > 0
if n=dim A < logy(p +1).

We see that the infinite-dimensional Zinbiel algebra (Clx], o) with the
multiplication (a o b)(z) = a(z) [ b(t)dt is not nilpotent and hence not
solvable. In other words, Theorem 1.1 and Corollary 1.5 are false in the
infinite-dimensional case.

As an application of our results, we classify Zinbiel algebras of dimension
<3 over an algebraically closed field K.

Theorem 1.7. Let K be an algebraically closed field of any characteris-
tic p.

Any Zinbiel algebra of dimension 1 is isomorphic to an algebra with trivial
multiplication: A = (e1), e oe; = 0.

Any two-dimensional Zinbiel algebra is isomorphic to the algebra Q(03)
defined as follows:

Q) = {e1,e2), a=0orl,

ejoe; =aey, e10e3=0, eyoe; =0, eyoey=0.

Any three-dimensional Zinbiel algebra with dim Ao A <1 is isomorphic
to the algebra R(«, 8,7,9) defined as follows:

R(Oé,ﬂ,% 5) = <€1, €2, €3> )

e10e; = aes, e1 0 ey = fes, epoesz =0,
ey 0 €1 = yes, €s 0 €9 = deg, es0ez =0,
esoe; =0, ezoep =0, esoez =0,

where o, 3,7,0 € K.

Any three-dimensional Zinbiel algebra A over an algebraically closed field
of characteristic #2 with dim A o A = 2 is isomorphic to the algebra W (3)
defined as follows:

char K #£2, W(3) = (e1,e2,€e3),

1
e10e; = eg, €106 = e, eroez =0,
ep 0 ey = es, ez 0ep =0, ez oez =0,
esoe; =0, egoey =0, esoez =0.

There are no 3-dimensional Zinbiel algebras A such that dim Ao A = 3.
The algebras R(«, 3,7,d) and W(3) are not isomorphic. The following
isomorphisms hold:
R(a7ﬁ7776)gR(17ﬁ,776) Zf 04750,
R(a, 3,7,6) = R(a, B,7,1) if 0#0.
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Therefore, there are two types of nonisomorphic classes of three-
dimensional algebras R(«, 3,7,d), where a,6 = 0 or 1 and 8,7 € K,
and W (3).

Two-dimensional Zinbiel algebras over complex numbers were also stud-
ied in [14].

In our paper, the letter n is used in two senses: sometimes, n denotes
the dimension of an algebra, sometimes, we use n as a nil-index. From the
context it will be clear in what sense n is used. Note that the nil-index
cannot be greater than the dimension of the algebra.

2. PROOF OF THEOREM 1.1

Every Zinbiel algebra is right-commutative:
(aob)oc=(aoc)ob.

Let

Cla)={x€Ad:a0x=0}
be the right centralizer of a € A. An important role in this paper is played
by the following property of the right centralizer.

Lemma 2.1. Let A be a right-commutative algebra. Then for all a,b €
A, we have C(a) C C(aob).

Proof. If x € C(a), then (aob)ox =(aox)ob=0and x € C(aod). O

Lemma 2.2. Let A be a Zinbiel algebra and let a € A. If v is an eigen-
vector of the linear operator l, with eigenvalue p € K, then v owv is an
eigenvector with eigenvalue 27 .

Proof. If aov = pw, then (aov)owv = uvowv and, by the Zinbiel identity,
(aov)ov=2ao (vow). Therefore, [,(v?)=2"1puv2. O

Lemma 2.3. Let A be a Zinbiel algebra of dimension n over an alge-
braically closed field K of characteristic char K # 2. Then for every a € A,
we have:

o [ =0, or

o there exists 0 # b € A such that l,(b) = A\b, bob = 0, for some

0#£ANeK.

Proof. If |, € End A is nil, then by the Hamilton-Cayley theorem {7 = 0.

If I, is not nil, then by Hamilton—Cayley theorem [,, as an operator
over an algebraically closed field, has a nontrivial eigenvalue 0 # u € K.
Let v € A be an eigenvector of [, with the eigenvalue y. By Lemma 2.2,
lo(v0F)) = 27%pw(k) for all k. Therefore, if p # 0, then there exists N <
n = dim A such that o0 V=1 £ 0, v(N) =,

Therefore, if [, is not nil, then there exists a nonzero eigenvalue p € K
and I, (b) = Ab, bob =0, for b= o V=1 X =2-N+1, £, O
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Lemma 2.4. For every finite-dimensional Zinbiel algebra A over an al-
gebraically closed field, there exists x # 0 such that C(x) = A.

Proof. Prove that there exists ag # 0 such that C(ag) = C(ag o b) for all
0#£be A

Take any nonzero element a; € A as ag. If C(a;) = A, then there is
nothing to prove: C(ag) = A = C(ag ob) for any b € A. Assume that
Cla) # A.

If C(a1) # C(ay o ag) for some as € A, then by Lemma 2.1,

C(a1) C Clay o ag).
Now take a1 o as as ag and repeat the procedure. If
C(a1 0 az) # C((a1 0 az) o a3)

for some az € A, then take (a; oas)oas as ag, and so on. Finally, we obtain
a sequence of nonzero elements a1, as,...,ar € A such that

C(ar) CcClaroag) CC((---(ag0ag) - ag—1)oag) C A.

Since A is finite-dimensional, this sequence terminates at some k. In other
words,

C((--- (a1 0ag) - -ag-1)oar) = C(((-- (a1 0 az) -~ ax—1) o ax) o axt1)

for any 0 # ag4+1 € A. Now take ag = (--- (a1 0 ag) -+ ) o ag.

Therefore, we have proved that there exists ag # 0 such that C(ag) =
C(ag od) for all b # 0.

Now prove that C(ag) = A.

If l,, = 0, then C(ag) = A. Assume that [, # 0 and N is the nilpotency
index of l,,, i.e., 1 < N < n, lfl\(’)_l # 0, and lé\; =0.

If char K = 2, then by the Zinbiel identity, (agob)ob = 2(ago (bobd)) =0
for all b € A. Therefore, b € C(ag o b) = C(ap) for all 0 # b € A. In other
words, C(ag) = A.

If char K # 2, then by Lemma 2.3 [} = 0 for n = dim A or there exists
0 # b € A such that agob = Ab, where A # 0 and bob = 0. The second case

is not possible:
be Clagob) =Clag) = apob=0=>A=0,

a contradiction. Therefore, I = 0. Let N be the nilpotency index of [4,:
lfl\;’l # 0, lfl\g =0forl < N <n=dimA. There exists ¢ € A such that
b=1Y""(c) #0. Then agob =12 (c) = 0 and, by the definition of ay,

C(ag) = Clag o b) = C(0) = A.
Therefore, in all cases we can take z = ag. O

Lemma 2.5. FEvery finite-dimensional Zinbiel algebra over an alge-
braically closed field of dimension >1 has a proper ideal.
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Proof. By Lemma 2.4, there exists 0 # z € A such that C(z) = A. Prove
that ] = Aox ={yox:y € A} is an ideal of A. For every a € A, we have

(yox)oa=(yoa)oxel.
Since C(z) = A, we have x oy = 0 for any y € A. Therefore,
ao(yox)=ao(yox+xoy)=(aoy)ox el

for all a € A. Therefore, I is a two-sided ideal of A.

Prove that dim7 < n = dim A. Take a basis {ej,...,e,} for A with
e; = x. Then z oz = 0 since C(x) = A. Therefore, I is the linear span of
the vectors e;ox = zox = 0, egox, ..., e ox. Therefore, dimI < n = dim A.
If I # 0, then we can take I as a proper ideal of A.

If I = Aox =0, then we can take as a proper ideal the one-dimensional
ideal generated by . ]

Proof of Theorem 1.1. We use induction on n = dim A.

Assume that n = 1. Prove that any one-dimensional Zinbiel algebra is
isomorphic to an algebra with trivial multiplication. If dimA =1 and A is
generated by the basis element e, then e; o e; = ae; for some o € K. By
the Zinbiel identity,

zinbiel(eq,e1,e1) =0 = a’e; =0 = a=0.

Therefore, any 1-dimensional algebra A is solvable.

Assume that n > 1 and our statement is true for n — 1. By Lemma 2.5,
A has some proper ideal J. Since dimJ < n and dim A/J < n, by the
induction hypothesis J and A/J are solvable. Therefore, A is solvable.
This completes the proof. O

3. PROOF OF THEOREM 1.2

In this section, n is a positive integer, not necessarily equal to dim A.

Lemma 3.1. For arbitrary elements aq, ..., ax+s of a Zinbiel algebra A,
the product

(apo(ago (- +(ag—10akr) --))) o (arst10 (ag+20 (- (Akts—1 0 Akys) -*)))

is the sum of (k+j71) elements of the form

(1) © (Ao(2) © (*** (Ao (kts—1) © Ao (hts)) 7)),
where o € Symy,, ; runs through all permutations such that
oi)y <o)<k = i<}
k<o(i)<o(j)<k+s = i<j

Proof. This is easy induction on k + s that uses the Zinbiel identity. O
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Corollary 3.2. Let A be a Zinbiel algebra. Then for every a € A and

alli,j € Z4, we have
atoa’ = <l +j' - 1)a-i+j.

J
Given aq,as,...,a, € A, denote by S, (a1,as,...,a,) the sum of n! right-
bracketed products formed by taking ai,as,...,a, in all possible orders.

Let axb=aob+ boa be the Jordan product in A = (A, o). The product
(a,b) — a b is also known as the shuffle product [15, 17]. If A is a Zinbiel
algebra, then (A, «) is associative and commutative [12].

Let I,, be the ideal of A generated by the right-bracketed nth powers a™”,
ac A

Lemma 3.3. For arbitrary elements ay, ..., ax1, of a Zinbiel algebra A,
we have

Sk(a, ..., a5) * Sp(@ks1, -y 0ptr) = Sprr(@1, ..., Qpgr).
Proof. We use induction on k. Let £k = 1. By Lemma 3.1,
a1 *Sp_1(az,...,a.) =ay0S.—1(as,...,a.) + Sr—1(ag,...,a;)0a;
= Sr(a1,...,a.).
Assume that our statement is true for k£ — 1. Since
Sk(at,...,ax) = Si1(a1) * Sp—1(az, ..., ar),

by the result of [12], we have

Sk(a, ... ax) * Sp(aps1,- -, Qtr)

= (S1(a1) * Sp—1(az,...,ar)) * Sp(art1s- -\ Aktr)

(the associativity of )
= S1(a1) * (Sg—1(az,...,ag) x Sr(ags1,-- - Qkir))

(the induction assumption)
= S1(a1) * Skyr—1(ag, ..., a0k4r)

(the induction assumption)
= Skr(ar, ..., aptr).

The lemma is proved. O

Lemma 3.4. Let A be a Zinbiel algebra. Then for arbitrary aq,...,ay,
u€ A,

n
Sn(al,...,an)ou:ZaioSn(al,...,di,...,an,u),
i=1

where a; means that the element a; is omitted.
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Proof. By Lemma 3.3,

Splar,...,an)0ou= (a3 x Sp—1(az,...,an))ou
=aj0(Sp_1(ag,...,an)*xu) + Sp—1(az,...,a,) o (ag *u)
=aj0S,(as,...,an,u)+ Sp_1(ag,...,a,) o Sz(a,u)
=ay0S,(az,...,an,u)+ (a2 % Sp_2(as,...,a,)) o Sa(ar,u)
=ay08S,(az,...,an,u)+az0 (Sp_a(as,...,an)* Sa(ar,u))
+Sn_2(as,...,ay) o (agx Sa(ai,u))
=ajoSy(az,...,an,u)+azo (Sy(a1,as,...,an,u))
+S,-2(as,...,a,) o Ss3(ar,az,u)
=---=ajo8S,(az,...,an,u)+azo (Sy(ay,as,...,an,u))+...
+S51(an) 0 Sp(ar,as, ... an_1,u).

The lemma is proved. ]

Lemma 3.5. Let A be a Zinbiel algebra, n be an integer, and n < p
or p = 0. Then the ideal I, = (a™ : a € A) generated by nth right-
bracketed powers is, as a vector space, the linear span of elements of the

form ay o (ag o (- (ak o Sp(@k+1,---sAktn)) -+ )), where ay,...,ax, are
any elements of A.

Proof. Denote by J,, the linear span of elements of the form X = a; o (ag o
(- (ag o Sp(@kt1y---saktn)) ). We will prove that I, = J,.
We have

Snlar,az,...,a,) = z:(—l)”_’“(ai1 +a,+-+a;)",

where the summation is taken over all nonempty subsets {iy,ia,...,4,} C
{1,2,...,n} and all products are right-bracketed. Therefore,

Sn(ah o 7an) € In~
Hence,
ajo(ago (- (ag o Sp(ars1,-- s apen)) ) € In
for all k. In other words, J,, C I,,.

Now we prove that I, C J,. It is clear that J, is a left ideal and
AoJ, CJ, If p=0orn<p, then

a™ = (n)"'S(a,...,a).

Therefore, in the case of p =0 or n < p, we can choose generators for I,, of
the form Sy, (x1,...,2,). Therefore, to establish that I,, = J,,, it suffices to
prove that X ou € J, for all X € J,, and u € A.

By induction on k = 0,1,2,..., we prove that X ou € J, for all u € A,
where X € J, has the form aj o (az 0 (- (ar 0 Sp(@ki1,-- -y Qhgn)) "))
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Let k = 0. Then by Lemma 3.3,
X = Sn(al, .. .,CLn) = ax *Sn_l(ag, .. .,an)
and by Lemma 3.4,
Xou:ZaiOSn(al,...,a”i,...,an,u) el,.
i=1

Therefore, our statement is true for £ = 0.

Assume that our statement is true for k — 1. In other words, for all Y =
azo (- (ak o Sp(akt1, .-, Qktn)) ) € J, and u € A we have Y ou € J,.
We know that aq0(uoY) € J,,. Then for X = a; oY, by the Zinbiel identity,

Xou=aj0oYou+uoY)=aro0(You)+aio(uoY) e J,.

Hence, our statement is proved for k. O

Lemma 3.6. Let (A,0) be a Zinbiel algebra. Then for any aq,...,a; €
A, we have

(---(ayoag)---oag_1)oar =ayoSk_1(as,...,ax).

Proof. By the Zinbiel identity, our statement is true for £ = 3. Assume that
it is true for kK — 1. Then

(«--(ar0az) -oag_1)oar = (a; o Sg_2(as,...,ax—1)) o ay
=ay 0 (Sk—2(ag,...,ar-1) % ax).
By Lemma 3.3,
Sk—a2(ag,...,akx-1) xap = Sk—1(az,...,ax—1,ax).
Therefore, our statement is true for k. The lemma is proved. O

Lemma 3.7. Let n be an integer and n — 2 < p or p = 0. Then
Sn—1(a1,...,an-1) 0 Sa(b1,bs) € I, for any ay,...,an—1,b1,b2 € A.

Proof. By Lemma 3.6, (n — 1)th right-bracketed product of a by bo b is

(@™o (bob) = (1/(n—2)(1/2(((aoa) o) oa)ob)ob
=(1/(n-2))(1/2)ao Sp(a,a,--- ,a,b,b) € L.

Since Sk(ay,...,ax) is the sum of elements of the form a*, the proof is
complete. (I

Lemma 3.8.

ao(boc)=52(a,boc)—boSsa,c).
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Proof. We have

Sa(a,boc) —bo Sy(a,c) =ao(boc)+ (boc)oa—bo(aoc)—bo(coa)
= (aob)oc.

The lemma is proved. O

Lemma 3.9. Let A be a Zinbiel algebra, n > 3, and let p = 0 or
n—1<p. Then
Infl o Infl c In

Proof. By Lemma 3.5, every two elements u,v € I,,_; can be represented
in the form

u=uaio(ago (- (ar o Sn-1(kt1s- - Akgn—1)) ")),
v=>bio(byo (- (broSp_1(brs1,- - bpgn-1))---))

for some a;,b; € A.

We use induction on k& + r and prove that wowv € I,. Assume that
k+r=20. Then

u:Sn—l(aly"' aan—l)v v:Sn—l(blv"' 7bn—1)~

By Lemma 3.3, v = Sa(b1, Sp—1(ba,...,b,—1)). Therefore, by the Zinbiel
identity,

Uov = Snfl(alv ce 7an71) © S2(b1>Sn72(b2; ce 7bn71))

= (Sp-1(a1,...,an—1) 0b1) 0 Sp_a(ba, ..., by_1)
(see Lemma 3.4)

n—1
:Z(aio n—l(ala'"5di7"-aan—17b1))O n—2(b23"'abn—1)
i=1

n—1
= aio(Sn1(a1, .- dis - an1,b1) % Sna(ba, -, bn1))
i=1

(Lemma 3.3)
n—1

= Z a; 0 Son—3(ai,...,di,...,an_1,b1,b2,...,by_1).
i=1

Therefore, in view of
Son-—3(x1,.. ., 02,-3) € lon—3 C I,

we see that uow € I,.

Assume that for & + r — 1 our statement is true. Consider two cases:
k> 0andr>0.

If £ > 0, then v = a; o uq for

U3 = ag ° ((ak OSnfl(akJrl’...’ak+n71))"‘).
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By the induction assumption, u; ov € I, and v o uy € I,,. Therefore,
uov=ajo(ugov+vouy) € I,.
If » > 0, then v = by o vy, where
vy =bgo -+ (br0Sp_1(brg1s-vybngr1))-+-).
As we have verified above,
vou=(bjovi)ou=bio(vioutuowvy) € I,
and by Lemma 3.3,
uxv € Ipy_o C I,.
Hence
uov=uxv—vou € I,.

Therefore, our statement is true for k + r. The lemma is proved. O

Lemma 3.10. Let A be a Zinbiel algebra and p =0 orn—1 < p. Then
AM C ..
Proof. We use induction on n > 2. It is easy to see that
ao(boc)=S3(a,boc)—boSs(a,c).
Thus,
(zoy)o(boc) = Sa(oy,boc) —boSy(z0y,0).
Therefore,
(xoy)o(boc) € Is.
In other words, A® C I,.
Now assume that A1 C [,,_;. Then by Lemma 3.9,
A = A1) 5 Ar=D) C [ o, 1 C1,.
O

Proof of Theorem 1.2. Let A be a solvable Zinbiel algebra with solvability
length N and let p = 0 or p > 2V — 1. Prove that A is nil with nil-index
2N by induction on N. For N = 1, the statement is obvious. Assume that
the condition AV=1 = 0 implies a2 = = 0 for every a € A.

Now assume that AY) = 0. Then AN~V = 0 for A = A/AN-D,
Therefore, by the induction hypothesis, a? e AN for all @ € A.
Thus,

2N—1

a oa? ! c AN = .

N
oN-1 oN-1 2% —1 oN

By Corollary 3.2,

gN-1

Therefore, if p > 2V — 1, then A is nil with nil-index 2%.
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Now we prove that A is solvable with solvability length N if A is nil with
nil-index N. If N = 2, then

(doe)o(boc)=Sa(doe,boc)—boSy(doe,c).
Thus, by Lemma 3.5, A® C I,. By Lemma 3.10, A™ C I, if p = 0 or
n > p — 1. Hence, A is solvable with solvability length N if Iy = 0 and
p=0or N—-1<p. O
4. PROOF OF THEOREM 1.3

Let n be any positive integer. For z,y € A, write x =y if x —y € I,.
Note that for any a € A,

aor=a90y,

roa=yoa
ifzx=y.

Lemma 4.1. For any a1,

e, Qp_1,bE A,
Snfl(alw

"aanfl) ob= _bOSnfl(alv

ey Qp_1).
Proof. By Lemma 3.3,
boS,_1(a1,ag,...,an—1)+ Sp—1(a1,a2,...,ap_1)0b
=Sy(a1,a2,...,a,-1,b) € I,.
The lemma is proved. ]
Lemma 4.2. For any x1,...,Zn_1,f,e € A,
fo(Sp—1(z1,xa,...,2p—1)0€) = So(f, Sn_1(x1,22,...,Tn_1)0€),

fo(eoSn_1(z1,22,

e ,l’n,l)) = Sg(f,e [¢] Snfl(l'l,l'g, e ,.Tnfl)).

Proof. By Lemma 4.1,
f © (Sn,1($1,$2, .

cyZp_1)oe)=—fo(eoS,_1(x1,z2,...,Tn-1)) + Y1,
where
y1 = foSp(z1,...,xn_1,€) € I,.
Therefore, by Lemma 3.8,
fo(Sn—1(z1,22,...,2n-1)0€) = So(f, Spn_1(z1,22,...,Tp—1) 0 €+ Yo,
where by Lemma 3.7
yo = —=Sp_1(x1, T2, ..., 2n_1) 0 S2(f,€) € I.
Further,
fo(eoSp_1(z1,72,. .- Tn_1)) = —fo (Sn_1(x1,T2,...,Tp_1)0€)
= —So(f, Sn—1(x1, 22,

oy Tpoy)oe) = Sa(f,e0 S, 1(w1, T2,
The lemma is proved.

e 71‘7,,_1)).
O
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Lemma 4.3. For any a,b,x1,...,T,_1,€ € A,
ao(bo(Sy—1(z1,%2,...,2n_1)0¢€)) = (aob)o (Sp_1(x1,T2,...,Tpn_1)0€),
ao(bo(eoSp_1(z1,22,...,7pn_1))) = (aob)o(eoSp_1(x1,T2,-,Tp_1))-

Proof. By Lemma 4.2,
ao(bo(Sp_1(x1,xa,...,2p—1)0€)) =ao Ss(b,Sp_1(x1,...,Tn_1)0€)
(Zinbiel identity)
=(aob)o(Sp_1(w1,22, - Tn_1)0e).
Therefore,
ao(bo(eoSy 1(x1, 72, Tn-1)))
(see Lemma 3.3)

a o (b o (_Sn—l(mla Ty l‘n_l) o 6))

_(a o b) o (Sn—l(l'hI% T xn—l) o 6)
(see Lemma 3.3)
= (a © b) o (6 © Sn_1(561,1‘2, . "xn—l))-

The lemma is proved. O

Proof of Theorem 1.3. Use induction on the nil-index n. Let n = 2. By
Lemma 3.8, any Zinbiel algebra with identity a> = 0 is nilpotent with
nil-index 3: ao (boc¢) =0 for any a,b,c € A.

Assume that for any aq,...,ax € A,

ayo(ago (- (ag—10ax))) € In_1
for some k < 2"~! — 1. Prove that for any a4, ... ,G2k+1 € A,
ay o (azo (- (agk 0 aggr1))) € In.
By the induction assumption,
apy2 0 (- (agk 0 agpy1)) € In_1.

Therefore, by Lemma 3.5,

apy2 0 (- (agk 0 agpt1)) = Sp_1(@1,. .., Tn_1)
or
ak+20 (- (agk 0 azk41)) = y1o (Y20 (- (Ys © Sn—1(x1, .-, Tn—1))))
for some x1,...,Tp_1,Y1,-.-,Ys € A.

In the first case, by Lemma 4.3,

aq o (a2 o ( .. (ak o (a;.H_l o Sn_l(l‘l,l‘g, e ,xn_l)))))

=(ajo(ago(---(ag—10ag)))) o (ars1 0 Sn_1(x1,...,Tn_1)).



NILPOTENCY OF ZINBIEL ALGEBRAS 209

By the induction assumption,
(a1 o(ago (- - (ak—10ag)))) € In_1.
Therefore, by Lemma 3.9,
apo(azo (- (agk o aspy1))) € In—1 0l 1 C 1.
In the second case, by Lemma 4.3,
ag o (agy10 (- (agk 0 azxt1)))
= ag o (art10 (Y10 (Y20 (- (¥s © Sn1(21, .., Tn-1))))))
=bo (Sp-1(x1,...,2n_1)0€),
where
b=—apo(art1o(rio((ys—20¥s-1)))) €A, e=ys €A
Thus, by Lemma 4.3,
ayo(---o(ag—10(bo(Sp_1(z1,22,...,2n_1)0€)))))
=(a1o(---(ag—10D))) o (Sp—1(z1,22,...,2p_1)0€)
By the induction assumption,
ajo(--+(ag_10b)) € I, 1.
Therefore, by Lemma 3.9,
ayo (- (agk 0 agky1)) € In—10 Iy C 1.

We obtain that the right-bracketed product of any 2k +1 < 2" — 1
elements of A belongs to I,. In other words, any Zinbiel nil-algebra is
nilpotent.

Any solvable algebra with solvability index N is nil if p = 0 or p >
2N _1. Any nil-algebra, as we have proved above, is nilpotent. Any nilpotent
algebra is solvable. O

5. PROOF OF THEOREM 1.7

Before giving the proof, recall some facts about central extensions of
algebras.

Let A be a Zinbiel algebra, C'(A, K) be a space of linear forms f: A —
K, C?(A,K) be a space of bilinear forms 1) : A x A — K, and C3(4, K)
be a space of trilinear forms ¢ : A x A x A — K. Recall the definitions of
coboundary operators for small degrees:

d:CY A K) — C*(A,K)
is given by
df (a,b) = —f(acb)
and
d:C*(A,K) — C*(A,K)
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is given by

d(a,b,¢) = Blaob,c) — la,boc) — la,cob).
Then B?(A,K) is a space of bilinear forms of the form df, where f €
Cl(A, K), and Z%(A, K) is a space of bilinear forms ¢ such that di) = 0.
It is easy to verify that d?f = 0 for any linear form f : A — K. Therefore,
for any Zinbiel algebra A,
B*(A,K) C Z*(A,K).

The second cohomology space is defined as follows:

H?*(A,K) = Z*(A,K)/B*(A,K).
Standard homological arguments show that H2(A, K) can be interpreted as
a space of central extensions of A:

0—Z—A—A—0.

In other words, any algebra A with abelian ideal Z is equal as a vector space
to the direct sum A @ Z and the multiplication in A is given by

(a+2)o(ay +21) =aoca; +n(a,ar),
where a bilinear mapping n : A X A — Z satisfies the relation
n(aob,c) —nla,boc) —nla,cob) =0 Va,b,c € A.
If for some linear mapping w: A — Z,
n(a,b) = —w(aob) Va,be A,

then the algebra A under this multiplication is isomorphic to the direct sum
of the algebras A & Z.

This interpretation of the second cohomology spaces will be used in de-
scribing algebras of small dimensions.

We will use one more result. Assume that A is ableian: a o b = 0 for
any a,b € A. Then B?(A, K) = 0. Therefore, for any abelian algebra A of
dimension n, the second cohomology space is isomorphic to n?-dimensional

matrix space:
H*(A,K) = Z*(A, K) = Mat,, .

Proof of Theorem 1.7. 1t is easy to verify that all algebras mentioned in
Theorem 1.7 are Zinbiel.

If dim A = 1 and A is generated by the basis element e, then e;oe; = aeq
for some o € K. By the Zinbiel identity,

zinbiel(eq, e1,e1) =0 = a’e; =0=a; =0.

By Corollary 1.6, for any Zinbiel algebra A over an algebraically closed
field of characteristic 0 or p > 7, there exists the nontrivial center Z(A) and
an exact extension of Zinbiel algebras

0—Z(A)—-A—A—0
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holds. In other words, A/Z(A) = A. Therefore, the classification of algebras
A is equivalent to the problem of calculation of second cohomology group
H?(A K).

Let A = (e1) be a one-dimensional Zinbiel algebra. Since any one-
dimensional algebra is abelian, H?(A, K) is one-dimensional and is gen-
erated by a cocycle

’(/)(61, 61) = 1
Therefore, any 2-dimensional Zinbiel algebra A= (e1,e2) with the central
element e; has the following multiplication table:

eroe; =fey, ejoea =0, ego0e; =0, eyoey =0.

If 3 = 0, then we obtain the algebra Q(0). If 8 # 0 under the new basis
{1/+/Bex1,e2}, then we obtain the algebra Q(1).

Since Q(0) is abelian and two-dimensional, H?(Q(0), K) is four-
dimensional and is generated by four cocycles 9;, i = 1,2, 3,4, such that

Yi(er,er) =1, taler,er) =1, s(ez,er) =1, tu(e,e2) =1
(non-written components are 0). Therefore, any three-dimensional exten-
sion of Q(0) by the one-dimensional center is equivalent to R(a,3,7,0).
Take a new basis in R(a,(,7,0). Under the basis {1/\/ae1,ea,e3},
we obtain the algebra R(1,03,7,0) if @ # 0. Similarly, the new basis
{e1,1/\/deq, e3} gives us the algebra R(a, 8,7,1) if § # 0.

Now we calculate the second cohomology of Q(1). Note that there are
six cocyclicity conditions di)(e;, ej,es) = 0, where 4,j,s = 1,2, j < s. They
give us the following three nontrivial relations:

Yler,er) =1, 2(er,e2) = Y(e2,e1), P(ez, e2) = 0.
Therefore, Z2(Q(1), K) is two-dimensional and is generated by the cocycles
11 and 5 such that

Yi(er,er) =1, toez,e1) =1, ta(er,e2) =1/2
(non-written components are 0). Note that ¢ = dw for w € CH(Q(1), K)
given by w(ep) = —1. Therefore, H*(Q(1), K) is one-dimensional and is
generated by a class of the cocycle 2. The corresponding central extension
is equivalent to the algebra A = Q(1) + K with the following multiplication
table:

«
e10e; = ey, 6106225637 ez 0e1 = aes, exoes =0,

where Q(1) = (e, e2) and one-dimensional center element is denoted by es.
Note that in A, one can obtain the new basis {e1, ez, 1/y/aes} if a # 0.
Under this basis, we obtain the algebra W (3). If a = 0, then we obtain the
algebra R(1,0,0,0).

A direct calculation shows that Theorem 1.7 is true also for cases p =
2.3,5.7. 0
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