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ALGEBRAS WITH SKEW-SYMMETRIC IDENTITY OF
DEGREE 3
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ABSTRACT. Algebras with one of the following identities are con-
sidered:
[[t1, t2], ts] + [[t2, t3), t1] + [[ts, 1], t2] = O,
[t1,ta]ts + [ta, t3]t1 + [ts, t1]ta = 0,
{[t1,t2], t3} + {[t2, ts], t1} + {[ts, t1], 2} = 0,

where [tl,tg] = tth - tgtl and {tl,tg} = tltg + tQtl. We prove
that any algebra with a skew-symmetric identity of degree 3 is
isomorphic or anti-isomorphic to one of such algebras or can be
obtained as their ¢-commutator algebras.

1. INTRODUCTION

Denote by (A,o) an algebra with a vector space A over a field K
and a multiplication o. Let o, be a new multiplication on A defined
by

ao,b=aob+qgboa (q-commutator).

Notice that o_; coincides with ordinary commutator
l[a,b] =aob—boa=ao_1b
and o; coincides with anti-commutator
{a,b} =aob+boa=ao;b.

Call the algebra (A, o,) as q-algebra of (A,o).

Let K{t¢y,...,tx} be an algebra of non-commutative non-associative
polynomials with variables ¢;,ts,...,t;. For any algebra (A, o) we
can consider a homomorphism

K{tl,...,tk} — A,

that corresponds to any f € K{t¢,...,tx} an element f(aq,...,ax) €
A. This means that in f(¢1,...,%) we make substitutions ¢; :=
ai, ...ty := a; by elements of A and calculate f(ay,...,a;) in terms

of multiplication o.
1
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A polynomial f € K{ty,ta,...,t;} is called identity on A, if
flay,...,ax) =0, Vay,aq,...,a; € A.
In such cases we say that f =0 is an identity of A.
A polynomial f € K{ty,ts,...,1;} is called skew-symmetric if
f(toq), - s towy)) = signo f(ti, ..., ty),

for any permutation o € Symy. An identity f =0 is skew-symmetric
if f as anon-commutative non-associative polynomial is skew-symmetric.
Define polynomials with 2 variables

lie(ty, ) = [t1, ta] = t1ts — toty,
jor(ti, ta) = {t1,ta} = tity + taty
and polynomials with 3 variables
lia(ty, ta, t3) = [[t1, t2], ts] + [[ta, 3], t1] + [[ts, 1], ta),
alia(ty,te, t3) = {[tl,tg],tg} + {[tg,tg],tl} + {[tg, tl], to},
lalia(ty, ta, t3) = [t1, ta]ts + [t2, t3]t1 + [ts, t1]ta,
ralia(ty, ta, t3) = t1[te, ts] + to[ts, t1] + ts[t1, tal,
alia'D (ty, ty, ts) = [t1, ta]ts+[ta, ta]ti+[ts, ta|tatq(ts[te, ts]+ta[ts, t1]+ts[te, ta]).
Introduce the following names for algebras with identities.

identity name of algebras

jor =0 Anti-commutative

lia =0 Lie-admissible

alia = 0 Anti-Lie-admissible or Alia

lalia =0 Left Anti-Lie-admissible or Left Alia
ralia = 0 Right Anti-Lie-admissible or Right Alia
alial = 0 q-Anti-Lie-admissible or q-Alia

lalia = 0,ralia = 0 | Two-sided Alia

For anti-commutative algebra (A, o) a bilinear map ¢ : Ax A — A
is called commutative cocycle, if

Y(aob,c)+Y(boc,a)+1P(coa,b) =0,

¥(a,b) = (b, a),
for any a,b,c € A.
An algebra (A, o) is said anti-isomorphic to algebra (A, x) if there
exist one-to-one map f: A — A, such that
flaob) = f(b)* f(a),
for any a,b € A.
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The aim of our paper is to describe algebras with skew-symmetric
identities of degree 3. We reduce the problem of studying algebras
with skew-symmetric identities of degree 3 to the problem of studying
q-Allia algebras for ¢ = 0,+1, anti-commutative algebras and their
commutative cocycles. We give standard constructions of 0-Alia al-
gebras and 1-Alia algebras. We give also examples of simple ¢-Alia
algebras.

2. SPACE OF SKEW-SYMMETRIC AND SYMMETRIC
NON-ASSOCIATIVE POLYNOMIALS

Let B, be a space of multilinear non-associative polynomials with
k variables. Since the number of non-associative non-commutative
bracketings on k letters is

E\ k-1

it is clear that B, is %—dimensional. Denote by 3, a subspace

of Py generated by skew-symmetric polynomials.
Let

1/2k—2
k= —( ) (Catalan number),

T B = By,

be skew-symmetrization map,

_ 1 ‘
s f(tlw--,tk)zy Z signo f(to@y, - tog)-

T oeSymy,

Theorem 2.1. The space B, is cj -dimensional and polynomials of a
form 7w~ f;, form base, where i =1,2,... ¢k, and f; runs monomials
corresponding to different types of bracketings.

Proof. Let g be a skew-symmetric polynomial. Present it as a
sum Y % g;, where g; is a linear combination of monomials of i-
th bracketing type. Since skew-symmetrization map does not change
bracketing type, we see that g¢; is also skew-symmetric polynomial for
any i = 1,2,... ¢ and is uniquely defined by g¢;(¢1,...,¢). This
means that polynomials 7~ f1,..., 7~ f,, form base of ‘B, .

Corollary 2.2. B; is 2-dimensional and has a base {lalia,ralia}.

Remark. Theorem 2.1 is true also for symmetric polynomials. Let
B be a subspace of P, generated by symmetric polynomials

f(ta(l)y PPN 7t0'(k)) — f(tla e ,tk)
and

w*s%%‘b‘i
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be a symmetrization map,

1
7T+f(t17 s 7tk) = E Z f(to(l)a o 7t0(k))7

" oeSymy,

Then dim*B; = ¢, and polynomials of a form 77" f;, form base, where
1 = 1,2,...,¢,, and f; runs monomials corresponding to different
types of bracketings.

3. ¢-ALIA ALGEBRAS CONSTRUCTED BY (0-ALIA ALGEBRAS

Denote by Lia, Qum@, AliaV and Alia> categories of Lie-

admissible, 0-Alia, 1-Alia and two-sided Alia algebras. Notice that
Lia = Alia™V
and
Lia NAWia® = Lia N Wia™ = Alia® N Wia™ = Alia>).

Theorem 3.1. Let ¢ € K, such that ¢*> # 1. Then any algebra of
a form ACD | where A is 0-Alia, satisfies the identity alia® = 0.
Inversely, any q-Alia algebra is isomorphic to an algebra AP for
some 0-Alia algebra A . In other words, categories of q-Alia algebras
Alia'? and 0-Alia algebras A© are equivalent if ¢> # 1.

If ¢> =1 this statement is not true. There exist algebras with iden-

tity alial = 0, that can not be obtained from 0-Alia algebras in a
form AW,

Proof. Let ¢*> # 1. Prove that A@ is 0-Aliaif A is ¢-Alia. Prove
also that (A@)(=9 is once again ¢-Alia and, moreover, it is isomorphic
to A.

Denote by [a,b]"9 a commutator of the multiplication o_,. Then

[a,0]"? =ao_yb—bo_ya=(14+q)(aob—Dboa)=(1+q)a,D]

Calculate lalia(a,b,c) and ralia(a,b,c) in terms of multiplication
o_q. We have

lalia(a,b,c) = [a,b] ™ o_, c+ [b,c] " o_,a+[c,a] TP o_, b
= (14+q)([a, b]oc+[b, cJoa+[c, alob) —(14q)q(co[a, b]+ao[b, c|+bo[c, a])
= (1 + q) lalia(a,b,c) — (1 + q)q ralia(a, b, c).
Similarly,
ralia(a,b,c¢) = co_g [a, b +ao_, [b,c]"?D +bo_,[c,a]"?
= (14q)(co[a, b]+aolb, c|+bolc, a]) — (14+q)q([a, bjoc+]b, c]oa+][c, a]ob)
= (1 + q)ralia(a,b,c) — (14 q)q lalia(a, b, c).
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Therefore,
alm(Q)(a, b, c) = lalia(a, b, c) + q ralia(a, b, c)

= (14 q)(1 — ¢*)lalia(a,b,c).
This means that A9 is ¢-Alia if A is 0-Alia.
Suppose now (A, *) is g-Alia. Endow A by a new multiplication
aob=(1—¢*)Yaxb+qbxa).
We see that

ao_gb=aob—qgboa=axb.
Therefore, (A,o_,) is isomorphic to (A,«*). Check that (A,o) is 0-
Alia. Let [a,b]* =axb—bxa. We have

[a,b] = (1 —¢*) axb+qbxa—bxa—qaxb)

=(1-¢)7' (1~ q)lab]".
Thus,
lalia(a, b, c)
=(1-¢)"' (1=t oc+ b oa+tca ob)
= (1-¢*) "' (1—q)([a, b]**c+[b, c]**a+][c, a]**b+q cx[a, b]*+q ax[b, c]*+q bx[c, a]*
= (1=¢*)7"(1 — q) alia'?(a,b,c)
Therefore (A, o) is 0-Aliaif (A, *) is ¢-Aliaand (Ao_,) is isomorphic
to (A, *).

Now consider the case ¢> = 1. Notice that any 0-Alia algebra
under g-commutator satisfies identity of degree 2 if ¢ = 1. Namely,
any algebra obtained from 0-Alia algebra A in a form A@ for ¢ =1
should be anti-commutative (in case ¢ = —1) or commutative (in case
q = 1). So, algebras with identities alia? = 0,¢> = 1, without
identities of degree 2 gives us counter-examples.

In the case ¢ = —1 as a such counter-example one gets free left-
symmetric algebras, i.e.,algebras with identity

(a,b,c) = (b,a,c).
In the case ¢ = 1 as a counter-example one takes the algebra
(K[z], %), where
a*b=0(0(a)).

It is 1-Alia and has no any identity of degree 2.
Thus categories Alia® and Alia are not equivalent if ¢? = 1.
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4. COMMUTATIVE COCYCLES

To describe two-sided Alia algebras and 1-Alia algebras we need
a new notion. Let A = (A,o) be an algebra and M be a vector
space. Call a bilinear map ¢ : A x A — M commutative cocycle with
coefficients in M, if

(1) 2/}(@,()) = ¢(b7 a),

(2) Y(aob,c)+(boc,a)+P(coa,b) =0

for any a,b,c € A.
If A is a Lie algebra and the condition is changed to anti-commutative
condition, then we will obtain well known notion of 2-cocyclicity of .
If M = K is the main field, then call commutative 2-cocycle as a
commutative central extension. In our paper we mainly consider the
case M = A and in such cases we call 1 shortly as a commutative
cocycle.

Let Z2, (A, M) be a space of commutative cocycles with coefficients

in M. Then
chom(A7 M) = Z?om(A’K) ® M

For any two-sided Alia algebra A = (A, ) one can correspond Lie
algebra L = AV = (A x_;) We establish that all two-sided Alia
algebras with given Lie part L can be characterized by Z2 (L, A).
Similar situation appears also for 1-Alia algebras. In this case L is
just anti-commutative algebra, not necessary Lie.

Let A = (A, o) be anti-commutative algebra with commutative co-
cycle . Let (A, o4) be an algebra with vector space A and multipli-

cation oy given by
aoyb=aob+1(a,b)

Theorem 4.1. (charK # 2) If A = (A, o) is anti-commutative al-
gebra and 1 is commutative cocycle, then algebra (A, oy) is 1-Alia.
Inversely, any 1-Alia algebra A = (A, %) such that ATV = (A o)
is isomorphic to algebra of a form (A, oy) for some cocycle 1 of the
anti-commutative algebra (A, o).

Any two-sided Alia algebra is Lie-admissible. If A = (A, o) is a Lie
algebra and 1 is its commutative cocycle, then the algebra (A, oy) is
two-sided Alia. Inversely, any two-sided Alia algebra A = (A,x), such
that A=Y 22 L is isomorphic to algebra of the form (A, oy) for some
commutative cocycle 1 of the Lie algebra L.
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Proof. Let A = (A,0) be anti-commutative algebra with multipli-
cation o and ¢ be commutative bilinear map

Y(a,b) = (b, a), Va,be A
Let x = o, be multiplication of the algebra (A,o,). Let
[a,b]* =axb—bxa,
{a,b}* =axb+bxa
be Lie and Jordan commutators for the multiplication . Then

[a,b]" =axb—bxa=2(aob—boa)=4(aob),

and
[a,b]" xc=4((aob)oc+(aob,c)),
cx[a,b]" =4(co(aob)+1(c,aob)).
Therefore,
{[a,b]*, c}* = 8Y(aob,c)
and

{la, b, e} + {[by ", a}* + {[e, )", b} =

8(t(aob,c) +9(boc,a) + p(coa,b)).
Thus, the algebra (A, o,) is 1-Alia if and only if 1 is commutative
cocycle of the algebra (A, o).
Let now A = (A,x) be 1-Alia. Let L = (A,0) be an algebra with
a vector space A and a multiplication

aob=(axb—Dbxa)/2.
Let v: Ax A— A be a commutative bilinear map given by
Y(a,b) = (axb+bxa)/2.

Then the multiplication o as a commutator of the multiplication  is
anti-commutative. Further,

Plaob,c) +v(boc,a) + p(coa,b)
=({aob,c}+{boc,a}+{coa,b})/2
= ({la, b, ¢} + {[b, e a}* +{le. )", b}*)/4

= aliaM*(a,b,¢) /4 =0
This means that 1 is commutative cocycle for anti-commutative alge-
bra L. Notice that

axb=aob+(a,b)
So, (A, %) = (A, o0y).
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Now suppose that A = (A, *) is two-sided Alia. Then as we have
noticed above

axb=aob+(a,b),
where
aob=la,b]"/2, ¥(a,b) = {a,b}".
We know that A is —1-Alia. This means that
[[a, 0], c]* + [[b, c]*, a]* + [[c, a]*, b]* = 0.

In other words, (A4, o) is Lie algebra. We also know that A is 1-Alia.
This condition is equivalent to the commutative cocyclicity condition
of ¢. Thus, A is isomorphic to the algebra (A,o,), where o is Lie
multiplication on A.

Inversely, let (A, o) be Lie algebra and 1 be commutative cocycle.
Then the algebra (A, ), where * = oy, has the following properties,

lalia*(a,b,c) = [a,b]* x c+ [b,c]" xa+ [c,a]* x b
= 2([a,b]° x ¢+ [b, ]’ xa + [c,a]° x )
=2([a,b]°0cc+1[b,c]?ca+[c,al’ob+1(aocb,c)+(boc,a)+1(coa,b))
=0,
and similarly,
ralia*(a,b,c) = a*[b,c]* +bx[c,a]* + ¢ * [a, b]*
=2(ao b, +bolc,al® +cola, b +¢p(aob, c) +¢(boc,a) +¢(coa,b))
= 0.
In other words, (A,o,) is two-sided Alia.

5. ALGEBRAS WITH SKEW-SYMMETRIC IDENTITY OF DEGREE 3

Theorem 5.1. Any algebra with a skew-symmetric identity of degree
3 over a field K of characteristic p # 2 is isomorphic to one of the
following algebras:

Lie-admassible algebra

left Alia algebra (or 0-Alia algebra)

right Alia algebra

1-Alia algebra

algebra of a form A9 for some 0-Alia algebra A and q € K,
such that ¢*> # 0, 1.
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Characterization of two-sided Alia algebras and 1-Alia algebras in
terms of anti-commutative algebras and their commutative cocycles is
given in Theorem 4.1. Let (A, o) be g-Alia algebra. Then an opposite
algebra (A, o,,) with multiplication ao,,b = boa, is 1/¢-Aliaif g # 0.
If ¢ =0 then 0-Alia algebra is left-Alia and its opposite algebra is
right-Alia.

Proof of Theorem 5.1. By Corollary 2.2 a space of skew-symmetric
polynomials of degree 3 is 2-dimensional and is generated by the left-
Alia and right-Alia polynomials lalia and ralia. Therefore any skew-
symmetric non-commutative non-associative polynomial of degree 3 has
a form f = f*% =« lalia + B ralia, where «, 3 € K. For example,

lia = fl”1
alia'? = lalia + qralia.

In other words, any non-commutative non-associative skew-symmetric
polynomial up to scalar is equal to alia? for some ¢ € K or equal to
ralt. It remains to use Theorems 3.1.

6. 0-ALIA ALGEBRAS
6.1. General constructions of 0-Alia algebras.

Proposition 6.1. Let (A,-) be right-commutative algebra,
(a-b)-c=(a-c)-b, Va,b,c € A.

Then (A,-) is 0-Alia.

Proof.
la,b] -c+[b,c]-c+][c,a] - b
=(a-b)-c—(b-a)-c+((b-c)-a—(c-b)-a+(c-a)-b—(a-c)-b
=(a-b)-c—(a-c)-b+(b-¢c)-a—(b-a)-c+(c-a)-b—(c-b)-a
= 0.

Theorem 6.2. Let (U,-) be an associative commutative algebra and
f,9:U — U be linear maps. Define on U a multiplication o by

aob=a-f(b)+g(a-b).
Then (U,o) is 0-Alia.
Denote obtained algebra as Ay (U, -, f,g). For a 0-Alia algebra A
say that it is special if A is isomorphic to a subalgebra of some alge-
bra of a form Ay(U,-, f,g), where (U,-) is associative commutative

algebra and f,g : U — U are linear maps. Otherwise say that A is
exceptional.
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Proof. We have
la,b] oc
= (a-f(b))- f(c) = (b- fla))- flc)+g((a- f(b)-c—(b-f(a))-c)
Therefore by commutativity and associativity properties of the multi-
plication -,
[a,b]oc+ [b,c]oa+ [c,a] o

= (a-f(b)-F(e)=(b-f(a))-f(e)+ ( ( )-fla)=(c- (b))

6.2. Killing form and two-sided Alia algebras in characteristic
3. Let (A,o) be any algebra over a field of characteristic 3 with mul-
tiplication o and commutator [a,b] = aob —boa. A commutative
bilinear map A x A — M is called invariant if

¥([a,b],¢) = ¥(a, [b,]),
for any a,b,c € A.

Theorem 6.3. Let A be any algebra over a field of characteristic
p = 3. Then any commutative invariant form ¥ : A X A — M is a
commutative cocycle.

Proof. We have

Thus,
w([av b]? C) + ¢<[b= C]? CL) + ¢([C7 a]? b) = 31/}(@7 {bv C]) =0,

for any a,b,c € A. Proof is completed.
Recall that, for any semi-simple Lie algebra a Killing form

(a,b) =trada adb

is invariant and non-degenerate. Let A = (A,0) be Lie algebra and
A= A+K be commutative central extension defined by a commutative
cocycle ¥ € Z7 (A,K). The multiplication on A is defined by

axb=aob+(a,b).
Then (A, «) is two-sided Alia. So,

com

Corollary 6.4. Any semi-simple Lie algebra in characteristic 3 with
a nontrivial invariant form has nontrivial structures of two-sided Alia
algebras.

) ) fa)+(c-f(a))-f(b)=(a-f(c))-
+g((a- f(0))-c=(b- f(a))-c f( ))-a—(c-fb)-at(c-f(a))-b—(a

- fe

)

f(b)

)-0)
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6.3. Simple two-sided Alia algebra with Lie part sli,.

Theorem 6.5. Let L =< e_q, e, e1]le—1,e1] = e, [e—1, 1] = e, [0, €1] =
e; > be 3-dimensional simple Lie algebra. Then Z2 (L,K) is 5 -

com
dimensional and s generated by commutative cocycles n;,t = 1,...,5

defined by
mle-1,e-1) =1, mae—1,€9) = mleo,e-1) = 1,
mle_1,e1) =1, n3(eo, €0) = 2, ns(er,e 1) =1,
(o, €1) = mler e0) =1, nsler,en) =1
(non-written components are 0 ).

Proof. There is only one nontrivial cocyclicity condition diy)(e_q, g, €1) =
0. More exactly,

2¢(e1,e1) = P(eq, [e—1, e1]) = ¥(eq, €o).

Other statements are evident.
Another formulation of Theorem 6.5.

Theorem 6.6. Let (sla,*) be an algebra with multiplication table
€_1*x€_1 =161+ 01260 + Q1 3€71,
€_1%€) = €_1F0Qg1€_1+022€0+Mg 361, €pk€_1 = —€_1+Qg1€_1+Q2260+Q2 361,
e_1x€1 = €ytag16_1+tQ3260+033€61, €1xe_1 = —€ytag1e_1+Qa3260+033€q,
€o X €y = 2(@3716_1 + 3 2€0 + 063’361),
epx€1 = €1+ 160ty 280+ 361, €e1x€) = —e1+ay 161+ 260+ 0y 3€1,

e1x€e; = Q5161 + Q5260 + Q5 3671,

where «;; € K, i =1,2,3,4,5,5 =1,2,3. Then (sly,*) is two-sided
Alia algebra. It is simple for any 5 x 3 -matriz (o, ;). Any two-sided
Alia algebra connected with sly is isomorphic to a such algebra for
some 5 x 3-matriz (o ;).

Proof. Follows from Theorems 6.5 and 4.1.

Remark. If p # 2,3, then the algebra (sly,*) gives us a unique
nontrivial example of two-sided algebras connected with classical sim-
ple Lie algebras [4] .
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6.4. Simple two-sided Alia algebras with Lie part W;. Let L =
W1 be one-sided or two-sided Witt algebra of rank 1 over a field K
of characteristic 0. Recall that, one-sided Witt algebra of rank 1 is
generated by vectors e;,7 € Z such that ¢+ > —1, and two-sided Witt
algebra of rank 1 is generated by elements e;,7 € Z. In both cases the
multiplication is given by
lei, €5] = (J — i)eiry-

Theorem 6.7. Let L be one-sided or two-sided Witt algebra of rank
1. Then Z2 (L,K) is infinite-dimensional and is generated by com-
mutative cocycles n;,1 € Z, defined by

ni(u,v) = coefficient of uv at x**2.

Here ©+ > =2 if L is one-sided Witt algebra.
Proof. Let ¢ € Z2 (L,K) be commutative cocycle. Notice that

com
Z% (L,K) is a direct sum of homogeneous subspaces,

72 (LK) =®,7% (LK),

com com,s

Zczom,s(L’K) =< w € Zgom(L7K>’w<€i7€j) = O?Z +] 7& s>
We can assume that ¢ is a homogeneous.
Commutative cocyclicity conditions on eg,e;,e;,i 4+ j = s, gives us

the following relations
U([eo, €], €5) + U ([es, €5, €0) + U([e5, €0], €) = 0 =
ip(ei, e5) + (J —)(eirs e0) —j(ej,e) =0 =
(J —)v(eo, eiv5) = (5 — D)p(ei 7).
Thus, if i # j,
V(e e5) = Y(eo, €itj)-
Therefore,
Y = (o, €s)Ns—2-
The proof is finished.
Another formulation of Theorem6.7

Theorem 6.8. Let f be an endomorphism of polynomial space U =
K[x] or Laurent polynomial space U = Kz,z7']. Then the algebra
(U, *s) , where

axpb=0(a)b—ad(b) + f(ab),
is two-sided Alia algebra and simple. Any two-sided Alia algebra con-
nected with (one-sided or two-sided) Witt algebra of rank 1 is isomor-
phic to (U,xs) for some endomorphism f € EndU.

Proof. Follows from Theorems 6.7 and 4.1.
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6.5. Simple 0-Alia algebras defined by symmetric matrix. Let
A = (\i;) be a symmetric matrix. Endow space of polynomials U =
K[z, ..., z,], by a multiplication

a*b_Z)\” b) + 86()b)

In other words,
1
axb =Y Ai;(8i(a)0;()+0;(a)0,(b)+0,0;(a +Z>\” i(a)0;(b)+507
1<J

Let a-b be a usual multiplication of polynomials and

1
a)=—3 > Xij0i0;(a)
i
1
=5 Zj i ;0;0; ()

Then

axb=a-f(b)+g(a-b).
So, (U,*) is a standard algebra A(U,-, f,g). Hence by Theorem 7.1
(U, ) is 0-Alia.

Theorem 6.9. The 0-Alia algebra (U,*) is simple if and only if the
matriz (X\;;) is non-degenerate.

For a = (ay,...,ap) € Z", set

n
la| = Z Q.
i=1

Endow (U,x) by grading. If
|z%| = |a] — 2, acZ,
Uy =<z |a| =k +2 >,
then
U = ®r>_2U,
U x U C Upys.

For example,
U,=<1 >,

U =<uzli=1,....,n>,
Up =< zxjli,j=1,...,n>.
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Notice that
uxl =Y " X;0:0;(u) Z)\“62 VueU,

1<J
1xu =0, Yu e U,

Ti*kTj = Tj*T; = Nijl,

T, xU = E /\Z'yjaj U
J

1
UK T; = éAz,zxﬁf(u) + Z )\z,]xzalaj(u) + Z )\m'aj (U)
J# J
In particular,
1
[U, Q?Z] =UXT; — T xU = 5)\1711‘1812(’&) + Z )\Z,J:cz&,aj(u)
J#L
The following Lemma states that the algebra (U, %) is transitive.

Lemma 6.10. If x;xu = 0,uxx; = 0,ux1l =0, then u € U_og =<1 > .

Proof. From the condition uwx1 = 0 it follows that
u =6yl +Z€xz+29”x1x],
1<j
for some 0o, 0;,0;,; = 0;; € K,i < j, with property
Z )\i,jei,j = 0
i<j

Further, for any i =1,.

Tk =0 = ZAija- 0= Z)\HQ +Z Mg (Y O g+ 054205 25) = 0

i'<j J'>j
:Z/\,SH +ZAZSZ@S%+ZA,SZQW%HZAHQH% )=0
j<s Jj>s
;»wae +ZZ)\M€”$]+ZZ)\HQS]%+2Z)\U6“:cj—0
o i<s ] J>s

= Z )‘i,jgj =0
J

2)‘1',]'9]',]' + Z Ai,sej,s + Z )\i,sesJ =0, Vi=1,...,n.

7<s j>s

= Z )\m@j - O
J
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7—1 n
Z /\@5937]‘ + 2/\1',]‘9]‘7]‘ + Z /\i,s‘gj,s = O, Vj = ]_, e, N
s=1 s=j+1
In other words,
AT =0,
A0 =0,
where A is n x n-matrix (A\;;), T is a column with coordinates
(01,...,0,), and 0 is a matrix of a form
2011 bip 013 - Oin
bho 200p O3 -+ oy
0 — 013 COa3 2033 --- G5,
91 n ‘92,71 93,11 T 26n,n

)

Since, det (\; ;) # 0, this means that 7= 0, 6 = 0. Lemma is proved.

Lemma 6.11. Suppose that X\, j, # 0, for some 1 <1y, jo < n. Then
for any v € U, there exists uw € U, such that

v = Z )\l’]alajOL)
0,J

Proof. Endow Z! by lexicographical ordering. For «, 3 € Z1} say
that a < 3, in the following situations:
e |a| < || or
e |a| = |8] and oy = B1,..., 51 = Br_1,ax < B for some
k<n.
Suppose that X;j, # 0,0 < jo, and (io,jo) is maximal with such
property. In other words, A\;; = 0,7 < j, if i > 149 or ¢ = 1ip,j > Jo.
Show that
2 €< Y Xij005(u)u € Klay, ... 0] >
i<j
for any a € Z7. Use induction by s = |a| and in any fixed s use
induction by ordered set of a’s with |a] = s.
If s=0, then a=(0,...,0) and
1= Z/\i’j(()ﬁj(/\;}joxioxjo), if 19 < j(),
i<j
1= Z )\i,j@-@j((%\ioyio)_1%20), if 19 < jg, .
i<j
Therefore base of induction is established.
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Suppose that for s — 1 our statement is true. Suppose that for any
f € Z%, such that || =s and B < a this statement is also true. Set

_ ai0+1 C!j0+1 o . . .
U=z, T x;', it d9 < Jo

io
i#i0,j0
a10+2 sz s if io :jo.
i#£i0

Then

> Xis005() = N @iy + 1)y + 12+,

i<j
if 19 < Jo Or

D i j0i05 () = N (ctig + 2) (g + 1)z + 0,

1<j
if i9g = jo. Here u/,u” are linear combination of monomials of a form
2% with B < a. So, by inductive suggestion

¢ e< Z )\m@l@](uﬂu € K[.ﬁlﬁl, e ,.Z'n] > .
i<j
Lemma is proved.
Proof of Theorem 6.9. Suppose that det ();;) = 0. Then there

exists some n; € K,7=1,...,n, such that

(3) Z)‘Z,Jnj:07 221,,n
j=1

Set

1=1

Let J be subspace of A, that consists of elements of a form Xu,u €

U=K][zq,...,x,], where Xu denotes usual multiplication of polyno-
mials. Prove that J is ideal of U.
We have
(Xu)*xa =

Z)\” 9j(a) + 68(Xu) )
_ZA,]{a 9j(a) + X 0;(u)0;(a)

+%ai<x>aj<u>a + 500 (wa+ X0 (w)a)
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= X'+ X1 + X,
where
X' =

1 1
> X {0:(X)udj(a) + 5@(X)8j (w)a + 583' (X)0;(u)a},
i

ZAwa
Z ~0,0;(u
By (3)

X' =

Z ZA”m Jud;(a Z Z)\”m Z Z)\”n]

= 0.
Hence,
(Xu)*a=X;+ X, € J,
for any a,u € U. Similarly,

ax* (Xu) =
1
E:A” )0;(Xu) + 0;(a)D:(Xu) + 50:0;(a) Xu)
= X"+ X5+ X¢ + X7,
where
zy” X)u + 9;(a)d;(X)u)

Z&j cJ,
Z&ﬁ

Zem

By (3),

17
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+ Z(Z Aijni)Oj(a)u)

= 0.
Therefore,
a*(Xu) = X5+ Xg+ X7 € J,

for any a,u € U.

So, we have proved that J =< Xu :u € U > is ideal of (U,*). It
remains to note that it is non-trivial ideal. It is evident: 1 & J.

Now suppose that det (); ;) # 0. Prove that (U,«) is simple.

Suppose that it is not true: [ is some non-trivial ideal of (U, ).
Take some 0 # R € I. Suppose that R = Zaezi fox®, for p, € K,
where 2% =[], 2}", o« = (v, ..., ). Assume that p, =0, for any «,
such that |a| >k, but ug # 0, for some 8 € Z% with |3]| = k. Call
k = deg R degree of R. Take R € I with minimal deg R.

Since

deg Rx1 <degR, degRxz; <degR, degx;*R <degR,
if Rx1,x;% R, Rxz; # 0, by Lemma 6.10 we obtain that

deg R = 0.
In other words, R € I. So,
1el,
if det A\ # 0.
Then

1
lel=uxl= 5%:)\1Jalaj(u> S J,
for any uw € U. By Lemma 6.11, I = U. This means that (U, ), is
simple, if det (); ;) # 0.

6.6. Simple exceptional 0-Alia algebra. All 0-Alia algebras con-
structed above are special. In other words they can be constructed in
a form Ay(U,-, f,g) for some associative commutative algebra (U, -)
and endomorphisms f,g. In [3] is proved that the following algebra
will be exceptional.

Theorem 6.12. The algebra (Kz|,*) with multiplication
axb=0%a)b+ 40*(a)d(b) + 53(a)d*(b) + 2a 0*(b),

is 0-Alia and simple.
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Proof. Let U = K[z]. Direct calculations show that (U,) is 0-
Alia.
Let e; = 23, Then

eixej=A+i+7)(0+i+7)9+i42))ei
So, A is graded:
A=®p_3A;, A=< >
AixAj C A
Lemma 6.13. If e_1 xu =0, then u € A_3.

Proof. Let
u = Z )\jej, )‘jo 7A 0
J7<Jo
Suppose that e_; xu = 0. We have to prove that j, = —3. Since

(A, ) is graded,
e_1xu=0= Nje xej—1 =0
= (3 + Jo)(4 + Jo)(8 + 2jo)ejo—1 = 0 = jo = —3.
Lemma 6.14. For any u € A there exists v such that u = e_; xv.
Proof. Let 7 > —3. Then
(44 5)(5+ 7)(10 + 2j) # 0.
Therefore, we can take the element
v=rejr/((4+7)(5+75)(10+2j)) € A.
Then,

€j = €_1 % .

This means that any element of A can be presented in a form e_; xv.

Proof of Theorem 6.12. Prove that 0-Alia algebra (Klz],*) is
simple. Let J be some nontrivial ideal of (K[z],x) and 0 # X =
> ici, Aiey € J with Ay # 0. Call 4; = deg X degree of X and take
such X with minimal degree. By Lemma 6.13

deg X = —3.
In other words,
1eld
So, by Lemma 6.14 J = K][z].
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7. 1-ALIA ALGEBRAS
7.1. Standard construction of 1-Alia algebras.

Theorem 7.1. Let (U,-) be associative commutative algebra and f,g :
U — U be linear maps. Define on U a multiplication o by

aob=ua-f(b)—0b- f(a)+ g(a-b).
Then (U, o) is 1-Alia.

Denote obtained algebra as A, (U, -, f,g).
Proof. Follows by Theorem 9.1.

Corollary 7.2. Define a multiplication on U = K|z] by
axb=—ad"(b) + 9" (a)b+ 0™ (ab).
Then (U,*) is 1-Alia for any m > 1.

7.2. Identities for 1-Alia algebra. Let U be differential associative
commutative algebra with derivation 0. Endow U by multiplication

a %y b=u0(a)d*(b).
Denote x; shortly as .
Theorem 7.3. Let
fi = aliaV = {[t1, ta]), ts} + {[ta, ta], 1} + {[ts, 1], t2},
fo = [t talts — t1(tats) + taltits) + 2(t1ts)ts — 2(tats)ty,
f3 = ass(tsty, ty, ta) —ass(tsto, ty, t1) — ass(tyty, ts, to) + ass(tyta, ts, t1),
Y signo ((tato()to@)low),

oc€Syms

fs = 2(((tat1)t2)ta)ts — 2(((tata)ta)ta)ts — (((Esta)ta)ts)ta+ (((tst1)ta)ts)ta
—(((tat2)tr)ta)ts + (((Eata)ts)ts)ts + (((Tat2)ta)ts)ts — (((tat2)ts)t1)ta
+(((tata)t)t2)ts — (((Esta)ta)ts)te — (((Tata)t)ts)tr + (((Eata)ts)tr)t2
)

+(((tsts)t1)ta)ts — (((tsts)t1)ts)ta
be non-commutative non-associative polynomials. Then

o fi=0,1<1i<05, areidentities for (U,x)

e [dentities fo =0, f3 =0, f4 =0, f5s =0 are independent

e o=0=f1=0

o f1=0,f1=0,f5 =0 are identities for (U,*,)

o fo=0,f3 =0 areidentities of the algebra (U,*,) iff u=1.

Here ass(ty,ta,t3) = (t1,te,t3) = ti(tats) — (t1t2)ts is an associator.
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We omit proof of this result. It needs long calculations. Just note
that the multiplication (a,b) — 9(a)0*(b) is opposite to the multi-
plication a * b = 9*(a)d(b). For the last multiplication Theorem 7.3
partially is proved above.

8. SIMPLE 1-ALIA ALGEBRA (K[z],0) WITH MULTIPLICATION
aob=0(d(a)b)
Let
aob=0(d(a)b).
Note that
20(0(a)b) = ad*(b) — 0*(a)b + 0 (ab).

Therefore, (U,0) can be obtained by standard construction of 1-Alia
algebras A (U, -, f, g), if one sets

f(a) = 0%(a)/2,9(a) = 0*(a)/2.

Any commutative or anti-commutative algebra is 1-Alia. It will be
interesting to describe simple algebras with minimal identity alial? =
0 for ¢ = 0,4+1. Minimality condition exclude from the considera-
tion standard examples of ¢-Alia algebras, like Lie algebras, (anti)-
commutative algebras, right-commutative algebras, left-symmetric al-

gebras. One of such non-trivial examples of 1-Alia algebras gives us
the algebra (K|z], o).

Theorem 8.1. The algebra (K[z],0) is simple.
Proof. Let

Then
cioej=(i+2)(i+j+3eir;,  —2<i]
For example,
e_po0e; =0,
ejoes=(j+2)(j+1)ej2,
e_10e; = (j+2)ej_1,
ejoe1 = (j+2)%; 1,
eg o ej = 2(j + 3)e;,
ejoeo = (j+3)(j +2)e;.

Suppose that non-trivial ideal J has element X = "
such that \;, # 0 and iy is minimal with this property,

Zujej S J:>ILLJ =0,Vj < 1.
J

/\ie,» - J,

12170



22 A.S. DZHUMADIL’DAEV

Prove that i = —2. Suppose that it is not true.
If i > 0, then

Xel=> XO€,2 = Z)\Z<Z+2)<Z+1)€1,2 € J, )\10(20+2)<Z0+1) §£ 0.

12140

This contradicts to minimality ¢y. So, the case ig > 0 is not possible.
Let ig = —1. Then

e_10X = Zmei—1 €J,

i>io
where
i = Ni(i+2), pio=A1#0.
This contradicts to minimality of ig. We proved that the case g = —1
is also not possible.
So, we have proved that i) = —2. We see that elements X oe; has
aform Y ... ,vie; with v;_2 # 0 if j runs elements 0,1,2,.... This

means that J = K[z]. So, (K|z],o0) is simple, where aob = 0(9(a)b).
Remark. Amap f: A— A, f:aw~ 0(a), induces a homomor-
phism of algebras

[ (A %) = (4,0),
where
axb=0%a)db).
Check it:
flaxb) = 0(0*(a)d(b)) = d(a) 0 A(b) = f(a) o f(b).

So, we see that (K[z], ) is 1-Alia and there exists exact sequence of
1-Alia algebras

0 — K — (K[z], %) = (K[z],0) — 0.

In other words, (K[z],*) is a central extension of (K[z], o).

9. STANDARD CONSTRUCTION OF q—ALIA ALGEBRAS

Theorem 9.1. Let A = (A,-) be associative commutative algebra with
multiplication a-b and f,g: A — A linear maps. Define a multipli-
cation aob by

aob=ua-f(b)—qb- f(a)+gla-b).
Then (A, o) is q-Alia.

Proof. Easy calculations. If ¢* # 1, it follows from Theorem 3.1.
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9.1. Simple ¢-Alia algebras.

Theorem 9.2. Let U = K[z] and
axb=ad™(b)—qd™(a)b+ qI™(ab).

Then (U,%) are q-Alia and simple for ¢* # 1.

Proof. Calculate ¢-commutator of the multiplication *

a*qb
=axb+qbxa
= ad™(b) — 0" (a)b + g™ (ab) + ¢ ™ (a)b — ¢*> ad™(b) + ¢*0™(ab)
= (1 —¢*)ad™ (b) + (¢ + ¢*)0™ (ab)

This multiplication is standard. In other words, for associative com-

mutative algebra U with usual polynomial multiplication a -b = ab
and linear maps

frU=U fla)=(1~¢*)0"(a),
g:U=U,  gla)=(¢"+¢)0"(a),
the algebra (U, «,) has aform Ay(U, -, f,g). So, by Theorem 7.1 (U, *,)
is 0-Alia. Then by Theorem 3.1 the algebra (U,*) is ¢-Alia.
Set
e; =2/ (i +m)!, i=—-m,—m-+1,....
Then

eoxe, = ( itj+m\  [i+j+m . i+j+2m e,
hH i+m 4 j+m T\ itm i

So, (U, ) is graded,
U=®>_nU, U; =< e; >,
UixU; C Uy,
Notice that
(4) e e; = (¢ = 1)esom,

(5) ei*ej:q(m‘>e_m, lf—m<2,j<07l—|—]:—m
)

Let J is a non-trivial ideal of (U,x). Take X =} .. Ae; €
J, such that \,; # 0 and i, is minimal with such property. Since
Y =e_,, X € J and 7y is minimal, by grading property Y = 0. In
particular, by (4),

Aig (q - 1) =0,
and
Aio - O
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if 79 > 0. So, we can assume that 7o < 0. Similar arguments that uses
(5) shows that the case iy > —m is not possible. So, ip = —m. In
other words

e_m € J.
Then by (4)
ej=(q—1)"e_p*e€jrm € J.
This means that
J=U.
Therefore, (U,x) is simple.

10. DUAL OPERADS TO ALIA ALGEBRAS

Theorem 10.1. Koszul dual algebras to left-Alia algebras is defined by
identities

[t1,t2]ts = 0,
(tito)ts = (t1t3)te,
t1(tats) = 0.

Left-Alia operads are not Koszul. Dimensions of multilinear parts of
Koszul dual to Left-Alia algebras are dy = 1,dy = 2,d3 =1,ds=1,....
Koszul dual to 1-Alia algebras is defined by identities

(tito)ts = —t1(tats),
(tito)ts = (tat1)ts,
(tita)ts = (tits)ts.
Multilinear parts of degree n of free algebra with these identities has

the following dimensions di = 1,dy =2,d3 =1,d; = 0,1 > 3.

Proof. According left-Alia identity in degree 3 there is only one
non-trivial relation between 6 left-bracketed elements
(6) (cob)oa = (aob)oc—(boa)oc+ (boc)oa+ (coa)ob— (aoc)ob

and no condition between 6 right-bracketed elements. Therefore we
can take as a base elements of free left-Alia algebra of degree 3 all 12
elements except (cob)oa.

We have

[a®u,b@v],c®w] =
((a-b)-c)@((uv)w)—((b-a)-c)@((vu)w)—(c:(a-b))(w(uv))+((c-(b-a))@(w(vu)),

[b@v,c®@w],a®u] =
((b-c)-a)@((vw)u)—((c:b)-a)((wv)u)—(a-(b-c))@(u(vw))+((a-(c:b)) @ (u(wv)) =
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(according (6) )
((b-¢)-a)R((vw)u)—(aob)oc((wv)u)+(boa)oc®((wv)u)—(boc)oa®((wv)u)
—(coa)ob((wv)u)+(aoc)ob@((wv)u)—(a-(b-¢c))@(u(vw))+((a-(c-b))@(u(wv)),

[c®@w,a®ul,b®v] =
((c-a)-b)@((wu)v)—((a-c)-b)@((uw)v) = (b-(c-a))©(v(wu))+((b-(a-¢))©(v(uw)).
Thus,

[a@u,b@v],c@u]+[[b@v,cR@w],a@u]l+ [[c®w,a®@u],b®v] =

((a-b) - c) @ {(uwv)w — (wo)u} = ((b- a) - ¢) @ {(vu)w — ((wv)u}
+((b-c)-a) @ {(vw)u — (wv)u} — (coa) o b® {(wv)u — (wu)v}
F(aoc)ob® {(wv)u— (uw)v} —(a- (b-c) ® (u(vw))
—(c(a-0)) @ (w(w)) + ((c- (b-a)) @ (w(vu)) + ((a- (c- b)) ® (u(wv))
—(b-(c-a)) @ (v(wu)) + ((b- (a-c)) @ (v(uw)).

Therefore Koszul dual operad is generated by relations that follow from

identities
(7) (tltg)tg - (tgtl)t:g, (tltg)tg - (tltg)tg, tl(tgtg) — 0
It is easy to see that multilinear part of degree n of free algebra with
identities (7) has the following base
n=1, {a1},
n=2, {aras, asa, },

n>2 Al ((mas)ag) - )an}.

Thus, dimensions of multilinear parts are do = 2,d; = 1,1 # 2.

We omit long calculations that shows that first four dimensions of
multilinear parts of free left-Alia algebras are 1,2,11,100.

So, generating functions are

fatia(z) = =2 + 2> — 112° /6 + 252" /6 + O(2”),
fauat(iatia)(x) = —x + v — 2% /6 + x4/24 + O(a).
We see that
flalia(fdual(lalia) (.Z')) =T — 33'4/24 + 0(375) 7é Z.

Therefore, necessary condition for Koszulity [1] for left-Alia algebras is
not fulfilled.

The case of 1-Alia algebras is considered in a similar ways.
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Remark. We do not know whether 1-Alia algebras form Koszul
operad. Generating functions look like

fi—atia(®) = —2 + 2* — 112° /3! + 1002* /4! — 12702° /5! + O (),

fdual(l—alia) (IL’) =—r+ .T2 - I3/3'
No contradiction for Koszulity condition until degree 5:

flfalia(fdual(l—alia) (l‘)) =T+ O($6)
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