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We consider decompositions of digraphs into edge-disjoint 
paths and describe their connection with the n-th Weyl 
algebra of differential operators. This approach gives a graph-
theoretic combinatorial view of the normal ordering problem 
and helps to study skew-symmetric polynomials on certain 
subspaces of Weyl algebra. For instance, path decompositions 
can be used to study minimal polynomial identities on Weyl 
algebra, similarly as Eulerian tours applicable for Amitsur–
Levitzki theorem. We introduce the G-Stirling functions which 
enumerate decompositions by sources (and sinks) of paths.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let G be a digraph with possible multiple edges and loops. Suppose that edges of 
G are labeled by distinct indices. We consider decompositions of G into edge-disjoint 
increasing paths. This means that we partition the edge set into paths so that edge 
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labels increase along every path. Paths that we consider are directed and not simple in 
general, i.e. they may contain cycles, but no repetition of any edge is allowed. Let us say 
that such decompositions are principal. Note that if G is decomposed into one path, it 
is clearly an Euler tour. If G has one vertex 1 and m labeled loops (1, 1), then principal 
decompositions correspond to partitions of set [m] := {1, . . . , m}.

In our paper we consider applications of this combinatorial setting related to Weyl 
algebra. The main idea behind our results is connection of graph decompositions with 
differential operators. We introduce the G-Stirling function which counts decompositions 
by sources (and sinks) of paths and it is defined as follows:

SG(I) := the number of principal decompositions of G with multiset of sources I.

If G has one vertex, then SG(I) becomes Stirling number of the second kind S(m, k), 
where |I| = k and G has m labeled loops (1, 1). So, SG(I) is a path partition version of 
the classical Stirling numbers (of second kind).

We obtain that coefficients in normal ordering composition of the n-th Weyl algebra 
An generated by x1, . . . , xn, ∂1, . . . , ∂n enumerate principal digraph decompositions with 
prescribed sets of sources and sinks. Related coefficients are the values of G-Stirling 
function. For example, the typical formula in our interpretation is

m∏
�=1

xi�∂j� =
∑
I

SG(I)
∏
i∈I

xj

∏
j∈J

∂j ,

where (i�, j�) is an edge of G with the label �, sum runs over all multisets of sources I, 
and J is a multiset of sinks (which is determined uniquely from the given I). This fact 
(in its general form, Theorem 3.1) gives a graph-theoretic combinatorial interpretation 
to the normal ordering problem, including the case n = 1, which was studied well (e.g. 
[2,3,5,10–13,16]). Apparently for n = 1, our interpretations are similar with graph com-
binatorial models studied in [2].

Consider the skew-symmetric polynomials sm as m-ary operations on Weyl algebra

sm(X1, . . . , Xm) =
∑

σ∈Sm

sgn(σ)Xσ(1) · · ·Xσ(m).

We are interested in a question whether sm = 0 is an identity on a certain sub-
space W of Weyl algebra (W ⊂ An), or whether it is an m-commutator, i.e. that 
sm(X1, . . . , Xm) ∈ W for all X1, . . . , Xm ∈ W .

Weyl algebra has no polynomial identities except associativity (Corollary 5 of The-
orem 1 in [9]). So, to explore possible nontrivial identities or commutators, one has to 
restrict the class to smaller subspaces. For example, a classical result due to Lie, Jacobi, 
Poisson, is that the space

A(−,1)
n := 〈u∂i | u ∈ K[x1, . . . , xn], i = 1, . . . , n〉



38 A. Dzhumadil’daev, D. Yeliussizov / Advances in Applied Mathematics 67 (2015) 36–54
can be identified as a space of vector fields Vect(n) and it has a 2-commutator,

[X,Y ] = XY − Y X ∈ A(−,1)
n

for all X, Y ∈ A
(−,1)
n . In [8] it was proved that A(−,1)

n has nontrivial N -commutator for 
N = n2 + 2n − 2 and that sN+2 = 0 is identity.

Note that the space A(−,1)
n can be endowed by a left-symmetric multiplication

u∂i ◦ v∂j = u∂i(v)∂j .

Under this multiplication A(−,1)
n becomes a left-symmetric algebra, i.e. it satisfies the 

following identity

(X,Y, Z) = (Y,X,Z), where (X,Y, Z) = X ◦ (Y ◦ Z) − (X ◦ Y ) ◦ Z.

Left-symmetric algebras appear in differential geometry and physics and they are known 
by many other names: Vinberg algebras, pre-Lie algebras, right-symmetric algebras, etc.

In [8] it was proved that the N -commutator sN is a well-defined operation not only 
under the associative multiplication, which says that for all X1, . . . , XN ∈ A

(−,1)
n

sN (X1, . . . , XN ) =
∑
σ∈Sn

Xσ(1) · (· · · (Xσ(N−1) ·Xσ(N)) · · ·) ∈ A(−,1)
n ,

but it can also be presented as an N -commutator under the left-symmetric multiplication

s◦N (X1, . . . , XN ) =
∑
σ∈Sn

Xσ(1) ◦ (· · · (Xσ(N−1) ◦Xσ(N)) · · ·).

The next natural subspace of Weyl algebra is

A(1,1)
n := 〈xi∂j | 1 ≤ i, j ≤ n〉.

Note that the space A(1,1)
n generates a subalgebra of A(−,1)

n as a left-symmetric algebra,

X = xi∂j , Y = xs∂k ∈ A(1,1)
n ⇒ X ◦ Y = δj,sxi∂k ∈ A(1,1)

n ,

but under the associative multiplication it is not closed,

X = xi∂j , Y = xs∂k ∈ A(1,1)
n ⇒ X ◦ Y = δj,sxi∂k + xixs∂j∂k /∈ A(1,1)

n .

The famous Amitsur–Levitzki theorem [1] states that s2n = 0 is an identity of the 
left-symmetric algebra A(1,1)

n . In [7] it was proved that this identity can be prolonged to 
the identity of the whole left-symmetric algebra A(−,1)

n .
Now a natural question arises about identities of A(1,1)

n as a subspace of the as-
sociative Weyl algebra. Numerical evidence shows that for n = 1, 2, 3 it behaves like 
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Amitsur–Levitzki identity, i.e. s2 = 0, s4 = 0, s6 = 0, respectively, are minimal polyno-
mial identities on A(1,1)

n . However, it turns out that this case is more complicated: s8 is 
not an identity for n = 4.

We study this problem using graph-theoretic approach. It is known that Amitsur–
Levitzki theorem can be proved using Euler tours in digraphs [4,15,14] (or decompositions 
into one path in our case). In fact, the normal ordering (or expansion) of polynomials 
sm has coefficients related to path decompositions (in some sense, generalized Euler 
tours). For instance, the coefficient at the first order term xi∂j in s2n is 0, which reflects 
Amitsur–Levitzki theorem; it corresponds to the usual Euler tours. The next order co-
efficients (xi1xi2∂j1∂j2 , etc.) index decompositions into two or more paths. Using this 
graph based scheme, we prove that s2n is not an identity on A(1,1)

n for n > 3. Note that 
the problem of finding the minimal polynomial identity on A(1,1)

n remains open, i.e. to 
find a minimal c = c(n) for which sc = 0 is identity. We know its existence and the 
following bound: 2n < c ≤ n2 (for n > 3).

We also apply this technique to study the N -commutators on Weyl algebra. As we 
mentioned above, a space of differential operators of first order A(−,1)

n has a nontrivial 
N -commutator for N = n2 + 2n − 2 [8] and a space of differential operators with one 
variable (n = 1) of order p admits a nontrivial N -commutator for N = 2p [9]. In all these 
cases, sN+1 = 0 is an identity. One can expect that this is a general situation: if sm = 0
is a minimal identity then in the pre-identity case sm−1 gives a nontrivial N -commutator 
for N = m − 1. Example of A(1,1)

n shows that this conjecture is not true. We prove that 
if an N -commutator on A(1,1)

n is nontrivial, then N = 2.

2. Principal decompositions and G-Stirling functions

We call decomposition of a digraph G = (V, E) into k edge-disjoint paths by 
k-decomposition. Let us suppose that edges of G are labeled by m indices, E =
{e1, . . . , em}. We say that the k-decomposition E = P1 ∪ . . . ∪ Pk is principal if for 
every path Pi = e�1 . . . e�s (1 ≤ i ≤ k) we have �1 < . . . < �s. In other words, we de-
compose the edge set into several paths and the indices of edges increase along every 
path. For example, the graph G1 with E = {(1, 2), (2, 1), (4, 2), (1, 4), (2, 5), (4, 3)} and 
V = {1, 2, 3, 4} has a principal 3-decomposition e1e2e4 ∪ e3e5 ∪ e6 (see Fig. 1 (a), (c)); 
e1e2 ∪ e4e6 ∪ e3e5 is also a principal decomposition, whereas e1e2 ∪ e4e3 ∪ e5e6 is not.

When V = {1} and graph has m labeled loop edges (1, 1), the principal decompositions 
correspond to partitions of set [m] into disjoint subsets. Further, we suppose that the 
digraph G is presented by the vertex set V = [n].

A block (or p-block if p is specified) of a graph is a distinguished set of edges 
{e1, . . . , ep}. If graph is built up from several (disjoint) blocks, then we require that 
the edges of each block must lie in distinct paths. For example, the digraph G′

1 (see 
Fig. 1 (b)) built from three blocks B1 = {e1, e2}, B2 = {e3}, B3 = {e4, e5, e6}, has a 
principal 4-decomposition e1e5 ∪ e2e4 ∪ e3 ∪ e6 (see Fig. 1 (d)). Note that a principal 
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Fig. 1. Examples of digraphs and principal decompositions.

3-decomposition of G1, e1e2e4 ∪ e3e5 ∪ e6, cannot be used for G′
1 since e1, e2 are from 

one block B1 and thus cannot be in the same path.
We will use the following notation for multisets: A − X is a difference eliminating 

from A as many copies of elements as X has, e.g. {13, 22, 3, 43} −{12, 2, 4} = {1, 2, 3, 42}; 
A 
X is a merge of multisets, e.g. {12, 2, 42} 
 {1, 22, 3} = {13, 23, 3, 42}. We also write 
G − e if edge e is eliminated from G or G −B if block B is removed.

For a given digraph G, let in(i), out(i) (i ∈ V ) denote the number incoming and 
outcoming edges, respectively;

Vout := {1out(1), . . . , nout(n)}, Vin := {1in(1), . . . , nin(n)},

Mout(G) := {I | I ⊆ Vout},

i.e., Mout is the set of all sub(multi)sets of Vout.
Note that if for a k-decomposition, we have the sources I, then the corresponding 

sinks J = Vin 
 I − Vout are determined uniquely. For example, in Fig. 1 (c) we have 
I = {1, 4, 4} and J = {3, 3, 4}. (Further, for any sources I we will just write sinks as J
meaning that J = Vin 
 I − Vout.)
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Define the G-Stirling function SG : Mout(G) → Z≥0 as follows

SG(I) := the number of principal decompositions of G

with sources I (and sinks J).

If n = 1, then SG(I) corresponds to Stirling number of the second kind S(m, k) where 
|I| = k and digraph G has m labeled loops (1, 1).

Theorem 2.1. The G-Stirling function SG satisfies the following properties:

(i) SG(Vout) = 1;
(ii) if SG(I) > 0 for some I ⊂ Vout, then for any I ′, such that Vout ⊇ I ′ ⊃ I, we have 

SG(I ′) > 0;
(iii) suppose that digraph G is built up from blocks B1, . . . , Bm so that the indices of 

edges increase with respect to the order of blocks. Let e = (i, j) ∈ Bm, G′ = G − e, 
I ′ = I − {i}. Let ki be the number of repetitions of i in (J − {j}) 
 {i} and re be 
the number of edges in Bm−e that end by i. Then the following recurrence relation 
holds for SG(I).

SG(I) = SG′(I ′) + (ki − re)SG′(I). (1)

Proof. The item (i) is clear, it corresponds to one principal |E|-decomposition of G.
(ii) If there is a principal decomposition with sources I then by additionally splitting 

certain paths at vertices I ′ − I we may get a principal decomposition with sources I ′.
(iii) Note that if SG(I) > 0, then j ∈ J . If edge e forms a separate path in a principal 

decomposition of G, then we should have i ∈ I, and the number of such decompositions 
is SG′(I ′). In the other cases, e is the last edge of any path and can be joined by the 
vertex i to decompositions of G′ having the same sources I and sinks (J −{j}) 
{i} (by 
eliminating e we remove j and add i to sinks). Since we cannot join e after re edges of 
the same block Bm, there are (ki − re) ways to join e to every of SG′(I) corresponding 
decompositions. So, the recurrence follows. �
Corollary 2.2. If G has edges e1, . . . , em (without blocks), then for em = (i, j), G′ =
G − em, I ′ = I − {i} and ki the number of repetitions of i in (J − {j}) 
 {i}, we have

SG(I) = SG′(I ′) + kiSG′(I). (2)

Corollary 2.3. If G has n = 1 vertex and m loops (1, 1), then SG(I) = S(m, k) if |I| = k, 
where S(m, k) is Stirling number of the second kind. Relation (2) becomes the well-known 
recurrence

S(m, k) = S(m− 1, k − 1) + kS(m− 1, k).
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Remark 2.4. The G-Stirling function SG(I) is a graph generalization of Stirling number 
of the second kind. Note that SG is different from Stirling (and Bell) numbers for graphs 
studied in [6], which count partitions of graph vertex set into independent sets. Although, 
for n = 1 (and several blocks) there is a correspondence between these definitions (par-
titions of edge set into increasing paths vs. partitions of vertex set into independent 
sets).

2.1. Symmetrization

The symmetric group acts naturally on decompositions by permuting the indices of 
edges. For σ ∈ Sm and digraph G with the labeled edge set E = {e1, . . . , em}, let Gσ be 
the same graph with edges labeled as {eσ(1), . . . , eσ(m)}. In general, this means that Gσ

will have another set of principal decompositions.
Define the following characteristic

EG(I) :=
∑

σ∈Sm

sgn(σ)SGσ (I), (3)

where I is any multiset on [n]. Note that if |I| = 1, then EG reduces to the sum

EG({i}) =
∑

eσ(1)···eσ(m) Euler tours i→j

sgn(σ),

which has nice algebraic application [4,14,15] (here j is the corresponding sink of an 
Euler tour). Namely, the following property is used in polynomial identities for matrix 
algebra: For a directed graph G = (V, E) with |V | = n and |E| = 2n and every 1 ≤ i ≤ n, 
we have EG({i}) = 0. As we will see in next section, the characteristic EG(I) shows a 
similar connection with the Weyl algebra.

We will also need the formula for computing EG(I) in terms of shuffles of paths, which 
are defined as follows.

For permutations σ, τ of �, r (disjoint) elements define the shuffle set Sh(σ, τ) as the 
set of all permutations of � + r elements from σ, τ such that the order of elements from 
each of σ and τ remains the same. For example,

Sh((1, 3), (4, 2)) = {(1, 3, 4, 2), (1, 4, 3, 2), (4, 1, 3, 2), (1, 4, 2, 3), (4, 1, 2, 3), (4, 2, 1, 3)}.

For more than two permutations σ1, . . . , σt the set Sh(σ1, . . . , σt) is defined similarly. In 
other words, Sh is the set of linear extensions of a poset that consists of separated chains 
labeled with respect to the given permutations. Note that

|Sh(σ1, . . . , σt)| =
(
|σ1| + · · · + |σt|

)
= (|σ1| + · · · + |σt|)!

.
|σ1|, . . . , |σt| |σ1|! · · · |σt|!
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Consider now any k-decomposition (not necessarily principal) P = {P1, . . . , Pk} of G
with sources I and sinks J ; every path Pi here is viewed as a permutation (�1, . . . , �i)
which presented by the sequence of edges e�1 · · · e�i . Define

E(P) :=
∑

σ∈Sh(P1,...,Pk)

sgn(σ). (4)

Proposition 2.5. The following formula holds for EG(I),

EG(I) =
∑

P:I→J

E(P), (5)

where the sum is taken over all k-decompositions with sources I and sinks J .

Proof. Consider any permutation σ ∈ Sm. If we take a principal decomposition of Gσ and 
apply σ−1 to it, then we get a decomposition of G with the same set of sources and sinks. 
Take any decomposition P = {P1, . . . , Pk} of G and the set of permutations σ for which 
σ(P) becomes principal. Then for any path Pi = e�1 . . . e�s , we have σ(�1) < · · · < σ(�s). 
Therefore, for every σ ∈ Sh(P1, . . . , Pk), σ−1 corresponds to a principal decomposition 
of Gσ. Note that sgn(σ) = sgn(σ−1) and so we obtain

EG(I) =
∑

σ∈Sm

sgn(σ)SGσ(I)

=
∑

P:I→J

∑
σ∈Sm,σ(P) is principal

sgn(σ)

=
∑

P:I→J

∑
σ∈Sh(P1,...,Pk)

sgn(σ). �

3. Connections with Weyl algebra

3.1. Definitions

Let K be a field of characteristic 0. The n-th Weyl algebra An is an associative algebra 
over K defined by 2n generators x1, . . . , xn, ∂1, . . . , ∂n1 and relations

xixj = xjxi, ∂i∂j = ∂j∂i, ∂ixj − xj∂i = δi,j for 1 ≤ i, j ≤ n,

where δi,j is the Kronecker symbol. The elements of types

xα∂β := xα1
1 · · ·xαn

n ∂β1
1 · · · ∂βn

n

1 An is isomorphic to the polynomial algebra with ∂i considered as partial derivation d/dxi.
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with α = (α1, . . . , αn), β = (β1, . . . , βn) ∈ Z
n
≥0, are called monomials. Define the length

�(xα∂β) :=
n∑

i=1
(αi − βi)

and the weight

ω(xα∂β) := (α1 − β1, . . . , αn − βn).

In most of the cases below, we will write monomials in the equivalent form

xi1 . . . xis∂j1 . . . ∂jp for i1, . . . , is, j1, . . . , jp ∈ [n];

e.g. this monomial has length s −p. All monomials xα∂β form a linear vector space basis 
of An. When the element w of An is expressed as a linear combination

w =
∑
α,β

c(α, β)xα∂β , c(α, β) ∈ K,

we say that w is normally ordered. The order of w is defined as

ord(w) := max
c(α,β) �=0

|β|, |β| =
n∑

i=1
βi.

Note that ord(w1w2) = ord(w1) + ord(w2).
Define the following subspaces of An:

A(p,q)
n := 〈xα∂β : |α| = p, |β| = q〉,

A(0)
n :=

⊕
i≥1

A(i,i)
n , A∗(p)

n :=
p⊕

i=1
A(i,i)

n .

Note that A(0)
n is the subalgebra of An formed by the elements of length 0.

3.2. Normal ordering

We show that combinatorial meaning of coefficients in the normal ordering can be in-
terpreted in terms of graph decompositions. Furthermore, we will consider monomials of 
subspace A(0)

n , i.e. of length 0 (otherwise, for our purposes we may add fictive elements). 
We associate every monomial w = xi1 . . . xip∂j1 . . . ∂jp ∈ A

(0)
n with the p-block of a graph 

in the following way:

block(w) := {(i1, j1), . . . , (ip, jp)}.
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Table 1
All principal decompositions of digraph G′

1 shown in Fig. 1 (b).

I J Principal decompositions

{1, 2, 4, 4} {2, 3, 3, 4} e1 ∪ e2e4 ∪ e3e5 ∪ e6

e1e5 ∪ e2e4 ∪ e3 ∪ e6

{1, 2, 2, 4, 4} {2, 2, 3, 3, 4} e1 ∪ e2e4 ∪ e3 ∪ e5 ∪ e6

{1, 1, 2, 4, 4} {1, 2, 3, 3, 4} e1e5 ∪ e2 ∪ e3 ∪ e4 ∪ e6

e1 ∪ e2 ∪ e3e5 ∪ e4 ∪ e6

{1, 1, 2, 2, 4, 4} {1, 2, 2, 3, 3, 4} e1 ∪ e2 ∪ e3 ∪ e4 ∪ e5 ∪ e6

Theorem 3.1. Let w1, . . . , wm ∈ A
(0)
n be monomials. Then we have

w1 · · ·wm =
∑

I⊆Vout

SG(I)
∏
i∈I

xi

∏
j∈J

∂j , (6)

where digraph G with n vertices is built up from the blocks block(w1), . . . , block(wm) (so 
that the indices of edges increase with respect to the order of blocks) and J = Vin
I−Vout.

Let us consider examples.

Example 1. Let n = 4 and

w1 = x1x2∂2∂1, w2 = x4∂2, w3 = x1x2x4∂4∂3∂3.

We have

w1w2w3 = 2x1x2x
2
4∂2∂

2
3∂4 + x1x

2
2x

2
4∂

2
2∂

2
3∂4 + 2x2

1x2x
2
4∂1∂2∂

2
3∂4 + x2

1x
2
2x

2
4∂1∂

2
2∂

2
3∂4

and according to Theorem 3.1, digraph with n = 4 vertices is built up from three blocks 
B1 = {e1 = (1, 2), e2 = (2, 1)}, B2 = {e3 = (4, 2)}, B3 = {e4 = (1, 4), e5 = (2, 3), e6 =
(4, 3)}. So, it is exactly the digraph shown in Fig. 1 (b). Table 1 shows its all principal 
decompositions and one can easily check that it corresponds to the expression above.

Example 2. Suppose now n = 3 and

w1 = x1∂1, w2 = x2∂3, w3 = x2∂1, w4 = x4∂4, w5 = x1∂2.

We show how the expression

w1w2w3w4w5 = 2x1x
2
2∂1∂2∂3 + 2x1x

2
2x3∂1∂2∂

2
3 + x2

1x
2
2∂

2
1∂2∂3 + x2

1x
2
2x3∂

2
1∂2∂

2
3

is related to graphs. According to Theorem 3.1, graph G (see Fig. 2) consists of n = 3
vertices and edges {e1 = (1, 1), e2 = (2, 3), e3 = (2, 1), e4 = (3, 3), e5 = (1, 2)}. Table 2
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Fig. 2. Graph in Example 2.

Table 2
All principal decompositions of the graph presented in Fig. 2.

I J Principal decompositions

{1, 2, 2} {1, 2, 3} e1e5 ∪ e2e4 ∪ e3

e1 ∪ e2e4 ∪ e3e5

{1, 2, 2, 3} {1, 2, 3, 3} e1 ∪ e2 ∪ e3e5 ∪ e4

e1e5 ∪ e2 ∪ e3 ∪ e4

{1, 1, 2, 2} {1, 1, 2, 3} e1 ∪ e2e4 ∪ e3 ∪ e5

{1, 1, 2, 2, 3} {1, 1, 2, 3, 3} e1 ∪ e2 ∪ e3 ∪ e4 ∪ e5

shows all possible sources and sinks I, J ⊆ {1, 2, 3}. Recall that SG(I) is the number of 
principal decompositions with sources I and sinks J . For instance, we have two possible 
principal decompositions with

I = {1, 2, 2}, J = {1, 2, 3} : e1e5 ∪ e2e4 ∪ e3 and e1 ∪ e2e4 ∪ e3e5.

Therefore, SG({1, 2, 2}) = 2, which contributes to the expression above as the summand 
2x1x

2
2∂1∂2∂3.

Proof of Theorem 3.1. We proceed by induction on the total order of w1, . . . , wm, i.e. 
on the value

ord(w1 · · ·wm) = ord(w1) + · · · + ord(wm).

The statement is obvious if the total order is 1, or we have monomial xi∂j . To prove the 
formula for monomials w1 · · ·wm, let wm = xi1 . . . xis∂j1 · · · ∂js and consider the action of 
w1 · · ·wm−1 on xis . For simplicity, put is = i, js = j and w′

m = xi1 · · ·xis−1∂j1 · · · ∂js−1 . 
Let {∂(1)

i , . . . , ∂(q)
i } be all ∂i’s in monomials w1, . . . , wm−1. When one of ∂i acts on xi, we 

will change this situation to the following equivalent operation: remove xi, then change 
∂i to the fictive element ∂n+1, and after the normal ordering process remove ∂n+1. Using 
this operation we obtain that

w1 · · ·wm = xi(w1 · · ·wm−1w
′
m)∂j +

(
q∑

[w1 · · ·wm−1]∂(�)
i →∂n+1

w′
m

)
∂j .
�=1 ∂n+1→1
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(Here [w1 · · ·wm−1]∂(�)
i →∂n+1

means that we change ∂(�)
i → ∂n+1 in one of w1, . . . , wm−1.) 

Note that we can apply the induction hypothesis to expressions [w1 · · ·wm−1]∂(�)
i →∂n+1

w′
m

and w1 · · ·wm−1w
′
m. Hence,

w1 · · ·wm = xi

(∑
I

SG′(I)
∏
�∈I

x�

∏
k∈J

∂k

)
∂j +

(
q∑

�=1

∑
I

SG′
�
(I)

∏
�∈I

x�

∏
k∈J

∂k

)
∂n+1→1

∂j ,

where graph with n vertices G′ is built up from block(w1), . . . , block(wm−1), block(w′
m); 

and graph G′
� obtained by adding a new vertex n +1 and changing the edge e = (v, i) that 

corresponds ∂�
i to e := (v, n + 1). Note that SG′

�
(I) = SG′(I) (with sinks (J −{n + 1}) 


{i}). Therefore, we get

w1 · · ·wm =
∑
I

SG′(I − {i})
∏
�∈I

x�

∏
k∈J

∂k +
∑
I

qSG′(I)
∏
�∈I

x�

∏
k∈J

∂k,

=
∑
I

(SG′(I − {i}) + qSG′(I)
∏
�∈I

x�

∏
k∈J

∂k

=
∑
I,J

SG(I)
∏
�∈I

x�

∏
k∈J

∂k,

where G is built up from block(w1), . . . , block(wm); we have used Theorem 2.1 (Eq. (1)) 
for which it is easy to see that q is a number of i’s in (T − {j}) 
 {i} without counting 
the last block. �
Remark 3.2. In fact, the monomial w = xi1 . . . xip∂j1 . . . ∂jp can be associated with any 
p-block of a graph that matches the vertices i1, . . . , ip with j1, . . . , jp, e.g. for every 
permutation σ ∈ Sp we may define

block(w) = {(i1, jσ(1)), . . . , (ip, jσ(p))}.

Note that these changes do not affect on the result of Theorem 3.1, the right-hand side 
remains the same.

Corollary 3.3. For a digraph G = ([n], E) with E = {e1, . . . , em}, we have
m∏
�=1

xi�∂j� =
∑
I

SG(I)
∏
i∈I

xi

∏
j∈J

∂j , (7)

where e� = (i�, j�), the sum runs over all (multi)sets of sources I, and J is a set of sinks.

Corollary 3.4. If n = 1, then (7) becomes the classical result

(x∂)m =
m∑
i=0

S(m, i)xi∂i,

where S(m, i) is Stirling number of the second kind.
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3.3. Skew-symmetric polynomials

Consider the skew-symmetric polynomial over noncommuting variables

sn(x1, . . . , xn) :=
∑
σ∈Sn

sgn(σ)xσ(1) · · ·xσ(n).

The famous Amitsur–Levitzki theorem [1] states that

s2n(A1, . . . , A2n) = 0

is a minimal polynomial identity for n × n matrices A1, . . . , A2n. This result is also 
known as an application of Euler tours to algebra [4,14,15]. Namely, if we have a digraph 
G = (V, E) with |V | = n and |E| = 2n, then for every 1 ≤ i, j ≤ n

∑
eσ(1)···eσ(2n) Euler tours i→j

sgn(σ) = 0.

We will now present a similar connection of graph theory with the Weyl algebra.
Recall that the subspace A(1,1)

n ⊂ An is generated by monomials xi∂j ,

A(1,1)
n = 〈xi∂j | i, j ∈ [n]〉.

We show the following skew-symmetric analog of Theorem 3.1.

Theorem 3.5. Let w1, . . . , wm ∈ A
(1,1)
n be monomials. Then

sm(w1, . . . , wm) =
∑
I

EG(I)
∏
i∈I

xi

∏
j∈J

∂j ,

where digraph G with n vertices has m edges represented by w1, . . . , wm (i.e. if w� =
xi�∂j� , then there is an edge (i�, j�) in G).

Proof. From Theorem 3.1,

wσ(1) · · ·wσ(m) =
∑
I

SGσ(I)
∏
i∈I

xi

∏
j∈J

∂j ,

where SGσ(I) enumerates principal decompositions with respect to the edges permuta-
tion σ. Therefore,

sm(w1, . . . , wm) =
∑
I

∑
σ∈Sm

sgn(σ)SGσ (I, J)
∏
i∈I

xi

∏
j∈J

∂j

=
∑
I

EG(I)
∏
i∈I

xi

∏
j∈J

∂j . �
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Remark 3.6. Theorem 3.5 presents a normal ordering of the skew-symmetric expression. 
We will see that this form is useful in investigating the skew-symmetric identities.

3.4. Minimal polynomial identities

We say that sm is a minimal polynomial identity on some space W if

sm(X1, . . . , Xm) = 0 for every X1, . . . , Xm ∈ W

and

sm−1(X1, . . . , Xm−1) �= 0 for some X1, . . . , Xm−1 ∈ W.

Amitsur–Levitzki theorem gives a hint that the coefficient of any order 1 term xi∂j
in s2n(w1, . . . , w2n) is 0 (it sums with a sign for all Euler tours from i to j). In next 
theorem we show that the same is not always true for coefficients at other terms.

Theorem 3.7. The following properties hold for sm on A(1,1)
n .

• s2n = 0 is a minimal identity on A(1,1)
n for n = 1, 2, 3.

• s10 = 0 is a minimal identity on A(1,1)
4 .

• For n > 3, s2n is not an identity on A(1,1)
n .

We first need the following result.

Lemma 3.8. Let

Sh(m,n) := Sh((1, . . . ,m), (m + 1, . . . ,m + n))

and

q(m,n) :=
∑

σ∈Sh(m,n)

sgn(σ).

Then

q(m,n) = q(n,m), q(2m− 1, 2n− 1) = 0,

q(2m, 2n) = q(2m + 1, 2n) =
(
m + n

n

)
.

Proof. By the definition, it is obvious that q(m, n) = q(n, m). Let us compute the re-
currence for q(m, n). If the last element of permutation is m + n, then we have the sum 
q(m, n − 1). Otherwise, the last element is m which gives (−1)nq(m − 1, n). Hence we 
have

q(m,n) = q(m,n− 1) + (−1)nq(m− 1, n).
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(In fact, q(m, n) is a q-binomial coefficient at q = −1.) So, the needed formulas can easily 
be derived by induction, since we have

q(2m + 1, 2n + 1) = q(2m + 1, 2n) − q(2m, 2n + 1) =
(
m + n

n

)
−
(
m + n

m

)
= 0,

q(2m, 2n) = q(2m, 2n− 1) + q(2m− 1, 2n) =
(
m + n− 1

n− 1

)
+
(
m− 1 + n

n

)
=
(
m + n

n

)
,

q(2m + 1, 2n) = q(2m + 1, 2n− 1) + q(2m, 2n) = q(2m, 2n). �
Proof of Theorem 3.7. First note that sm(w1, . . . , wm) = 0 if some of w1, . . . , wm are 
equal.

1) s2 = 0 is identity for n = 1. It is obvious that s2(x∂, x∂) = (x∂)2 − (x∂)2 = 0.
s4 = 0 is identity for n = 2. Here we may consider only the case with four operators 

x1∂1, x2∂2, x1∂2, x2∂1. It can easily be checked that s4(x1∂1, x2∂2, x1∂2, x2∂1) = 0.
s6 = 0 is identity for n = 3. There are 17 such cases up to symmetry; and all can 

easily be verified.
2) s10 = 0 is identity for n = 4. This is verified from our computer calculations for all 

the possible cases (with reductions up to symmetry).
3) To prove that s2n is not identity for n > 3, we show that for 2-decompositions 

of graphs G defined in Fig. 3, EG({1, 1}) does not sum to 0. The latter means from 
Proposition 3.5 that the coefficient of x2

1∂
2
1 in s2n is nonzero.

Suppose n is even. We look for all cases of decompositions of G (see Fig. 3, left) 
with I = {1, 1}, J = {1, 1}. For every vertex i (2 ≤ i ≤ n) consider the paths 
e1 · · · ei−1e2n−i+2 · · · e2n and en+1 · · · e2n−i+1ei · · · en. These permutations will sum to 
(−1)n−i+1|Sh(2(i −1), 2(n − i +1))|, which by Lemma 3.8 gives q(2(i −1), 2(n − i +1)) =
(−1)n−i+1( n

i−1
)
. There are two more paths e1 · · · en and en+1 · · · e2n, for which we have 

q(n, n) =
(

n
n/2

)
. Therefore,

EG({1, 1}) =
n∑

i=2
(−1)n−i+1

(
n

i− 1

)
+

(
n

n/2

)

= −1 − (−1)n +
(

n

n/2

)
> −1 − (−1)n + 2 ≥ 0.

If now n is odd, then we consider graph G as in Fig. 3 (right). We again look for all 
decompositions with I = {1, 1}, J = {1, 1}. For every vertex i (3 ≤ i ≤ n − 1) we have 
the following two possibilities of paths:

P1 = enen+1 . . . e2n−1−ieiei+1 . . . en−1;P2 = e1 . . . ei−1e2n−i . . . e2n−3e2n−1e2ne2n−2

and

P1 = enen+1 . . . e2n−1−ieiei+1 . . . en−1;P2 = e1e2n−1e2ne2 . . . ei−1e2n−i . . . e2n−2.
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Fig. 3. Graphs G with EG({1, 1}) �= 0 for n even (left) and odd (right).

For both cases we get the sum of (−1)n−i|Sh(2(n − i), 2i)|, which is (−1)n−i
(
n
i

)
. The 

remaining four cases of paths decompositions are

P1 = e1e2n−2;P2 = en . . . e2n−3e2n−1e2ne2 . . . en−1,

with sum of −|Sh(2, 2n − 2)| = −
(
n
1
)
;

P1 = e1e2n−2;P2 = en . . . e2n−3e2n−1e2ne2 . . . en−1,

with sum of −|Sh(4, 2n − 4)| = −
(
n
2
)
;

P1 = e1 . . . en−1;P2 = en . . . e2n−3e2n−1e2ne2n−2,

with sum of |Sh(n − 1, n + 1)| =
(

n
(n−1)/2

)
;

P1 = e1e2n−1e2ne2 . . . en−1;P2 = en . . . e2n−2,

with sum of |Sh(n + 1, n − 1)| =
(

n
(n−1)/2

)
. So, we obtain

EG({1, 1}) =
(

2
n−1∑
i=3

(−1)n−i

(
n

i

))
−

(
n

1

)
−
(
n

2

)
+ 2

(
n

(n− 1)/2

)

= 2
(

(1 − 1)n − (−1)n − (−1)n−1
(
n

1

)
− (−1)n−2

(
n

2

)
− 1

)

−
(
n

1

)
−

(
n

2

)
+ 2

(
n

(n− 1)/2

)

=
(
n

2

)
− 3

(
n

1

)
+ 2

(
n

(n− 1)/2

)
≥

(
n

2

)
− 3

(
n

1

)
+ 2

(
n

2

)
> 0.

(Here n ≥ 5.) �
Remark 3.9. Reducing the non-identity case to computing EG(I) for some sources I gives 
a more efficient way to analyze the sum instead of looking at the whole sm. Computing 
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EG(I) for all sources I is apparently faster than computing sm directly (which at least 
is evident in smaller cases computations).

Remark 3.10. From our computations, most likely that s12 is a minimal identity on A(1,1)
5 . 

In fact, one can reduce the number of cases in computations by proving the following 
equivalent properties:

(A) Suppose there are monomials X1, . . . , Xm ∈ A
(1,1)
n such that sm(X1, . . . , Xm) �= 0. 

Then there are monomials X ′
1, . . . , X

′
m ∈ A

(1,1)
n such that sm(X ′

1, . . . , X
′
m) �= 0 and 

with total weight 0, i.e.

ω(X ′
1) + · · · + ω(X ′

m) = (0, . . . , 0).

(B) If EG(I) �= 0 for some multisets I and digraph G, then there is a balanced digraph G′

(i.e. in(v) = out(v) for each vertex v) with the same number of vertices and edges, 
such that EG′(I ′) �= 0 for some multiset I ′.

3.5. N -commutators

sN is called N -commutator on A(p,p)
n if sN (X1, . . . , XN ) ∈ A

(p,p)
n for every X1, . . . ,

XN ∈ A
(p,p)
n . If sN (X1, . . . , XN ) �= 0 for some X1, . . . , XN ∈ A

(p,p)
n , N -commutator is 

nontrivial.
It is known that the space of differential operators of first order A(−,1)

n = 〈u∂i | u ∈
K[x1, . . . , xn]〉 has a nontrivial N -commutator for N = n2+2n −2 [8] and a space of differ-
ential operators with one variable (n = 1) of order p admits a nontrivial N -commutator 
for N = 2p [9], i.e. there is a nontrivial 2p-commutator on the subspace 〈u∂p : u ∈ K[x]〉. 
In all these cases, sN+1 = 0 is an identity. One can expect that this is a general situa-
tion: if sm = 0 is a minimal identity then in the pre-identity case sm−1 gives a nontrivial 
N -commutator for N = m − 1. In next theorem we show that this is not true for the 
subspace A(1,1)

n .

Theorem 3.11. Let sN be a nontrivial N -commutator on A(1,1)
n . Then N = 2.

Proof. Suppose N > 2. If N ≥ 2n, then ord(sN ) ≥ 2 since coefficients at terms xi∂j
that are EG(i) vanish from the Amitsur–Levitzki theorem. This means that sN /∈ A

(1,1)
n .

For the other cases, we adopt the graph-theoretic version of example used in proof of 
Amitsur–Levitzki theorem (that s2n−1 is nonzero).

If N < 2n, let us choose the first X1, . . . , XN operators from the set (of 2n − 1)

x1∂1, x1∂2, x2∂2, . . . , xn−1∂n, xn∂n.

The latter represents the graph G with edges (1, 1), (1, 2), (2, 2), . . . , (n − 1, n), (n, n). 
Consider two cases.
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Case 1. If N = 2r − 1, then the coefficient at term x1xr∂1∂r in sN (X1, . . . , XN ) is 
EG({1, 1}) (sinks are {1, r}). There is only one 2-decomposition with such sources and 
sinks: the paths are (1 → 1) and (1 → 2 → 2 → · · · → r − 1 → r → r). Hence, 
EG({1, 1}) = |Sh(1, 2r − 2)| = q(1, 2r − 2) = 1 > 0 and sN /∈ A

(1,1)
n .

Case 2. If N = 2r, then consider the term x1x2∂2∂r and its coefficient in sN , which 
is EG({1, 2}) (sinks are {2, r}). The possible 2-decompositions here are

(1) (1 → 2) and (2 → 2 → · · · → r − 1 → r − 1 → r) and
(2) (1 → 2 → 2) and (2 → 3 → · · · → r − 1 → r − 1 → r).
Therefore, EG({1, 2}) = q(1, 2r − 1) + q(2, 2r − 2) = r − 1 > 0 and sN /∈ A

(1,1)
n . �

4. Open questions

We propose several problems concerning the minimal identities in Weyl algebra.

Problem 1. What is c = c(n) (n > 3) for which sc = 0 is a minimal polynomial identity 
on A(1,1)

n ? We know the bounds 2n < c ≤ n2.
Using graph-theoretic interpretation, question becomes the following. What is relation 

between |E| and |V | such that digraph G = (V, E) has EG(I) = 0 for all sources I? This 
formulation implies from our graph-theoretic interpretation. For instance, in the classical 
Amitsur–Levitzki theorem we have EG({i}) = 0 for all i ∈ V if |E| ≥ 2|V |.

Consider a more general setting. Recall that A(p,p)
n ⊂ An is the subspace of Weyl 

algebra generated as follows

A(p,p)
n := 〈xi1 · · ·xjp∂j1 · · · ∂jp | i1, . . . , ip, j1, . . . , jp ∈ [n]〉.

What is c(p, n) such that sc(p,n) = 0 is a minimal identity on A(p,p)
n ?

Problem 2. Let A∗(p)
n :=

p⊕
i=1

A(i,i)
n . What is a minimal identity on A∗(p)

n ? For instance, 

s2 is identity on A∗(p)
1 , since

x�1∂�1x�2∂�2 =
∑
i≥0

i!
(
�1
i

)(
�2
i

)
x�1+�2−i∂�1+�2−i

and so s2(x�1∂�1 , x�2∂�2) = 0.
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